ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что любой остроугольный треугольник
площади 1 можно поместить в прямоугольный треугольник площади Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов. Докажите справедливость формулы На сторонах правильного треугольника ABC как на основаниях внутренним образом построены равнобедренные треугольники A1BC, AB1C и ABC1 с углами α, β и γ при основаниях, причём α + β + γ = 60°. Прямые BC1 и B1C пересекаются в точке A2, AC1 и A1C – в точке B2, AB1 и A1B – в точке C2. Докажите, что углы треугольника A2B2C2 равны 3α, 3β и 3γ. Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус
описанной окружности треугольника со сторонами Напечатать в порядке возрастания все простые несократимые дроби, заключенные между 0 и 1, знаменатели которых не превышают 7. В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами. Докажите, что для любого натурального a найдётся такое натуральное n, что все числа n + 1, nn + 1, nnn + 1, ... делятся на a. Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100. Докажите, что в любой выпуклый многоугольник
площади 1 можно поместить треугольник, площадь которого не меньше:
а) 1/4; б) 3/8.
В вершинах куба расставлены цифры 1, 2, ..., 8. Докажите, что есть ребро, цифры на концах которого отличаются не менее чем на 3. |
Задача 35054
УсловиеВ вершинах куба расставлены цифры 1, 2, ..., 8. Докажите, что есть ребро, цифры на концах которого отличаются не менее чем на 3. ПодсказкаОт вершины с цифрой 1 до вершины с цифрой 8 можно дойти, двигаясь не более чем по трём ребрам. Решение Назовём расстоянием между двумя вершинами куба наименьшее количество рёбер, которые нужно пройти от одной из этих вершин до другой. Легко видеть, что расстояние между любыми двумя вершинами не больше 3. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке