Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.

Вниз   Решение


На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.

ВверхВниз   Решение


Докажите, что площадь выпуклого четырёхугольника равна половине произведения его диагоналей на синус угла между ними.

ВверхВниз   Решение


а) Докажите для всех n > 2 неравенство    

б) Найдите какие-нибудь такие натуральные числа a, b, c, что для всех  n > 2  

ВверхВниз   Решение


Художник-авангардист нарисовал картину "Контур квадрата и его диагонали".
Мог ли он нарисовать свою картину, не отрывая карандаша от бумаги и не проводя одну линию дважды?

Вверх   Решение

Задача 35473
Темы:    [ Обход графов ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 7,8
Из корзины
Прислать комментарий

Условие

Художник-авангардист нарисовал картину "Контур квадрата и его диагонали".
Мог ли он нарисовать свою картину, не отрывая карандаша от бумаги и не проводя одну линию дважды?


Решение

См. задачу 31092 а).


Ответ

Не мог.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .