Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D – точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что  ∠AOD = 3∠ACD.

Вниз   Решение


Объём пирамиды ABCD равен 5. Через середины рёбер AD и BC проведена плоскость, пересекающая ребро CD в точке M . При этом DM:MC = 2:3. Найдите площадь сечения пирамиды указанной плоскостью, если расстояние от неё до вершины A равно 1.

ВверхВниз   Решение


Правильный восьмиугольник со стороной 1 разрезан на параллелограммы. Докажите, что среди них есть по крайней мере два прямоугольника, причем сумма площадей всех прямоугольников равна 2.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника взяты точки A1, B1, C1 соответственно, причём радиусы окружностей, вписанных в треугольники A1BC1, AB1C1 и A1B1C, равны между собой и равны r. Радиус окружности, вписанной в треугольник A1B1C1, равен r1. Найдите радиус окружности, вписанной в треугольник ABC.

ВверхВниз   Решение


Дана бесконечная последовательность чисел a1, ..., an, ... Она периодична с периодом 100, то есть  a1 = a101a2 = a102,  ... Известно, что  a1 ≥ 0,  a1 + a2 ≤ 0,  a1 + a2 + a3 ≥ 0  и вообще, сумма  a1 + a2 + ... + an  неотрицательна при нечётном n и неположительна при чётном n. Доказать, что  |a99| ≥ |a100|.

ВверхВниз   Решение


Автор: Анджанс А.

На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что  a = b.

ВверхВниз   Решение


В трапеции ABCD основание  AD = 2,  основание  BC = 1.  Боковые стороны  AB = CD = 1.  Найдите диагонали трапеции.

ВверхВниз   Решение


Три мухи равной массы ползают по сторонам треугольника так, что их центр масс остается на месте. Докажите, что он совпадает с точкой пересечения медиан треугольника ABC, если известно, что одна муха проползла по всей границе треугольника.

ВверхВниз   Решение


Исходное сообщение, состоящее из букв русского алфавита и знака пробела (-) между словами, преобразуется в цифровое сообщение заменой каждого его символа парой цифр согласно следующей таблице: \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline А & Б & В & Г & Д & Е & Ж & З & И & К & Л & М & Н & О & П \\ \hline 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 \\ \hline \end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline Р & С & Т & У & Ф & Х & Ц & Ч & Ш & Щ & Ь & Ы & Э & Ю & Я & - \\ \hline 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\ \hline \end{tabular} Для зашифрования полученного цифрового сообщения используется отрезок некоторой последовательности с периодом 1 4 7 6 5 6 3 6 9 0 1 6 3 6 5 6 7 4 9 0 (при этом неизвестно, с какого места начинается последовательность). При зашифровании каждая цифра сообщения складывается с соответствующей цифрой отрезка и заменяется последней цифрой полученной суммы. Восстановите сообщение: 2339867216458160670617315588 (Задача с сайта www.cryptography.ru.)

Вверх   Решение

Задача 35742
Темы:    [ Теория алгоритмов (прочее) ]
[ Ребусы ]
[ Криптография ]
Сложность: 4
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Исходное сообщение, состоящее из букв русского алфавита и знака пробела (-) между словами, преобразуется в цифровое сообщение заменой каждого его символа парой цифр согласно следующей таблице: \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline А & Б & В & Г & Д & Е & Ж & З & И & К & Л & М & Н & О & П \\ \hline 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 \\ \hline \end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline Р & С & Т & У & Ф & Х & Ц & Ч & Ш & Щ & Ь & Ы & Э & Ю & Я & - \\ \hline 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\ \hline \end{tabular} Для зашифрования полученного цифрового сообщения используется отрезок некоторой последовательности с периодом 1 4 7 6 5 6 3 6 9 0 1 6 3 6 5 6 7 4 9 0 (при этом неизвестно, с какого места начинается последовательность). При зашифровании каждая цифра сообщения складывается с соответствующей цифрой отрезка и заменяется последней цифрой полученной суммы. Восстановите сообщение: 2339867216458160670617315588 (Задача с сайта www.cryptography.ru.)

Подсказка

Для того, чтобы найти исходное сообщение, найдите сначала цифровое сообщение, полученное из него с помощью таблицы замены. Используйте то, что на нечетных местах цифрового образа исходного сообщения могут быть только цифры 0, 1, 2 и 3.

Решение

Для того, чтобы найти исходное сообщение, найдем сначала цифровое сообщение, полученное из него с помощью таблицы замены. Согласно этой таблице на нечетных местах цифрового образа исходного сообщения могут быть только цифры 0, 1, 2 и 3. Последовательно рассматривая эти значения для каждого нечетного места цифрового сообщения с использованием соответствующей цифры шифрованного сообщения, найдем соответствующие варианты значений цифр шифрующего отрезка. Для этого вычислим остатки от деления разностей цифр шифрованного и варианта цифрового сообщений:
порядковый номер места1357911 1315171921232527
шифрованное сообщение S(k) 2 3 8 7 1 4 8 6 6 0 1 3 5 8
вариант 0 для Г(k) 2 3 8 7 1 4 8 6 6 0 1 3 5 8
вариант 1 для Г(k) 1 2 7 6 0 3 7 5 5 9 0 2 4 7
вариант 2 для Г(k) 0 1 6 5 9 2 6 4 4 8 9 1 3 6
вариант 3 для Г(k) 9 0 5 4 8 1 5 3 3 7 8 0 2 5
По условию последовательность, из которой выбран шифрующий отрезок, является периодической с периодом 20. Из таблицы вариантов значений цифр шифрующего отрезка видим, что 5-я его цифра может быть равна 5, 6, 7 или 8, а его 25-я цифра - 2, 3, 4 или 5. Отсюда получаем, что Г525=5. На периоде последовательности, из которой выбран шифрующий отрезок, есть две цифры 5: C5 и C15 (на 5-ом и 15-ом местах). Поэтому рассмотрим два случая. Если Г5=C5, то Г7=C7=3. Это противоречит таблице вариантов значений цифр шифрующего отрезка, в которой Г7 может быть равна 4, 5, 6 или 7. Если же Г515, то соответствующий шифрующий отрезок: 1636567490147656369016365674 хорошо согласуется с таблицей вариантов значений его цифр. Вычитая цифры найденного отрезка из соответствующих цифр шифрованного сообщения и заменяя разности их остатками от деления на 10, получим по таблице замены пар цифр на буквы исходное сообщение:
шифрованное сообщение 23 39 86 72 16 45 81 60 67 06 17 31 55 88
шифрующий отрезок 16 36 56 74 90 14 76 56 36 90 16 36 56 74
цифровое сообщение 17 03 30 08 26 31 15 14 31 16 01 05 09 14
исходное сообщение С В Я З Ь - П О - Р А Д И О

Источники и прецеденты использования

web-сайт
URL cryptography.ru
Название Сайт "Криптография"
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .