Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

а) Пусть P — точка Брокара треугольника ABC. Угол  $ \varphi$ = $ \angle$ABP = $ \angle$BCP = $ \angle$CAP называется углом Брокара этого треугольника. Докажите, что  ctg$ \varphi$ = ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$.
б) Докажите, что точки Брокара треугольника ABC изогонально сопряжены.
в) Касательная к описанной окружности треугольника ABC в точке C и прямая, проходящая через точку B параллельно AC, пересекаются в точке A1. Докажите, что угол Брокара треугольника ABC равен углу A1AC.

Вниз   Решение


Докажите, что основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на одной прямой (прямая Симсона.)

ВверхВниз   Решение


Докажите, что вписанный угол равен половине соответствующего центрального угла (или дуги) окружности.

Вверх   Решение

Задача 52339
Темы:    [ Вписанный угол равен половине центрального ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Докажите, что вписанный угол равен половине соответствующего центрального угла (или дуги) окружности.


Подсказка

Разберите три случая: центр окружности лежит на стороне угла, внутри угла, вне угла.


Решение

  Пусть центр O окружности лежит на стороне AB вписанного угла BAC (рис. слева). Поскольку BOC – внешний угол равнобедренного треугольника AOC, то  ∠BOC = ∠BAC + ∠ACO = 2∠BAC.  Следовательно, ∠BAC = ½ ∠BOC, то есть вписанный угол BAC равен половине центрального угла BOC, или половине дуги BC, не содержащей точки A.

  Пусть центр окружности лежит между сторонами вписанного угла BAC. Проведём диаметр AA1. Тогда луч AA1 лежит между сторонами угла BAC. Поэтому  ∠BAC = ∠BAA1 + ∠CAA1.
  Поскольку центр окружности лежит на общей стороне вписанных углов BAA1 и CAA1, то по доказанному  ∠BAA1 = ½ ∠BOA1,  ∠CAA1 = ½ ∠COA1.  Следовательно,  ∠BAC = ½ (∠BOA1 + ∠COA1) = ½ ∠BOC.
  Наконец, пусть центр окружности лежит вне угла BAC. Если при этом луч AB проходит между сторонами угла CAA1, то
BAC = ½ ∠СAA1 – ½ ∠BAA1 = ½ ∠COA1 – ½ ∠BOA1 = ½ (∠COA1 – ∠BOA1) = ½ ∠BOC.

Замечания

Следствие. Вписанные в окружность углы, опирающиеся на одну хорду, равны, если их вершины расположены по одну сторону от этой хорды, и составляют в сумме 180° в противном случае.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .