Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Пусть  x = sin 18°.  Докажите, что  4x² + 2x = 1.

Вниз   Решение


Докажите, что уравнение  a1 sin x + b1 cos x + a2 sin 2x + b2 cos 2x + ... + an sin nx + bn cos nx = 0  имеет хотя бы один корень при любых значениях a1, b1, a2, b2, ..., an, bn.

ВверхВниз   Решение


В треугольнике ABC известно, что  AB = BC,  AC = 10.  Из середины D стороны AB проведён перпендикуляр DE к стороне AB до пересечения со стороной BC в точке E. Периметр треугольника ABC равен 40. Найдите периметр треугольника AEC.

ВверхВниз   Решение


В треугольнике боковая сторона равна 16 и образует с основанием угол в 60o; другая боковая сторона равна 14. Найдите основание.

ВверхВниз   Решение


В равнобедренную трапецию вписана окружность.
Докажите, что отношение площади трапеции к площади круга равно отношению периметра трапеции к длине окружности.

Вверх   Решение

Задача 52668
Темы:    [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В равнобедренную трапецию вписана окружность.
Докажите, что отношение площади трапеции к площади круга равно отношению периметра трапеции к длине окружности.


Подсказка

Выразите площадь трапеции через её периметр и радиус вписанной окружности.


Решение

Пусть P – периметр трапеции, R – радиус круга. Тогда средняя линия трапеции равна P/4, а площадь –  P/4·2R = PR/2.  Площадь круга равна πR². Следовательно, искомое отношение площадей равно  P : 2πR.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 333

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .