Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

а) Прямые l1 и l2 параллельны. Докажите, что Sl1oSl2 = T2a, где  Ta — параллельный перенос, переводящий l1 в l2, причем a $ \perp$ l1.
б) Прямые l1 и l2 пересекаются в точке O. Докажите, что Sl2oSl1 = R2$\scriptstyle \alpha$O, где  R$\scriptstyle \alpha$O — поворот, переводящий l1 в l2.

Вниз   Решение


Постройте многочлен R(x) из задачи 61019, если:
  а)  P(x) = x6 – 6x4 – 4x3 + 9x2 + 12x + 4;
  б)  P(x) = x5 + x4 – 2x3 – 2x2 + x + 1.

Вверх   Решение

Задача 53458
Темы:    [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Равные отрезки AB и CD пересекаются в точке K. Известно, что  AC || BD.  Докажите, что треугольники AKC и BKD равнобедренные.


Подсказка

Через точку A проведите прямую, параллельную CD.


Решение

Через точку A проведём прямую, параллельную CD, до пересечения с продолжением отрезка BD в точке M. Треугольники AMD и DCA равны по стороне
(AD – общая) и двум прилежащим к ней углам, поэтому  AM = CD = AB.  Значит, треугольник BAM – равнобедренный. Следовательно,
KDB = ∠AMB = ∠ABM = ∠KBD,  то есть треугольник DKB также равнобедренный. Далее очевидно.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1187

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .