ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что в выпуклый центрально-симметричный многоугольник можно поместить ромб вдвое меньшей площади.
Около окружности, радиус которой равен 4, описан прямоугольный треугольник, гипотенуза которого равна 26. Найдите периметр треугольника.
Две окружности радиусов 3 и 4, расстояние между центрами которых равно 5, пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, причём CD = 8 и точка B лежит между точками C и D. Найдите площадь треугольника ACD.
Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1 ≤ P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1 ≤ P2S2 + P3S3 + P4S4. Найдите диагонали четырёхугольника, образованного биссектрисами внутренних углов прямоугольника со сторонами 1 и 3. |
Задача 53495
УсловиеНайдите диагонали четырёхугольника, образованного биссектрисами внутренних углов прямоугольника со сторонами 1 и 3. ПодсказкаПолученный четырёхугольник – квадрат. Решение Пусть ABCD – данный прямоугольник, AB = 1, BC = 3. Четырёхугольник MNKL, образованный пересечением биссектрис углов A и B, A и D, C и D, B и C, – квадрат. Ответ2. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке