Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Множество чисел А заданы условиями:
а) 1 принадлежит А
б) если k принадлежит А, то 2*k+1 принадлежит А и 3*k принадлежит А, и других чисел множество А не содержит.

Напечатать первые n<1000 чисел множества А в порядке возрастания. Вот начало этой распечатки: 1,3,4,7,9,10,13,15,19,...

Вниз   Решение


Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника
  a) число вершин;
  б) число рёбер.

ВверхВниз   Решение


Два n-угольника вписаны в одну окружность, причем наборы длин их сторон одинаковы, но не обязательно равны соответственные стороны. Докажите, что площади этих многоугольников равны.

ВверхВниз   Решение


На гранях двух разных правильных тетраэдров M и N написаны числа M1, M2, M3, M4 и N1, N2, N3, N4 в порядке, указанном на рис.1.3. Можно ли совместить тетраэдры так, чтобы на совпавших гранях оказались написаны одинаковые числа? Напечатать ДА или НЕТ.

Вверх   Решение

Задача 53566
Темы:    [ Вписанные четырехугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если  ∠ABD = 74°,  ∠DBC = 38°,  ∠BDC = 65°.


Ответ

ABC = 112°,  ∠BCD = 77°,  ∠CDA = 68°,  ∠DAB = 103°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1307

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .