Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Докажите, что  $ \angle$ABC > 90o тогда и только тогда, когда точка B лежит внутри окружности с диаметром AC.

Вниз   Решение


Две окружности пересекаются в точках P и Q. Через точку A первой окружности проведены прямые AP и AQ, пересекающие вторую окружность в точках B и C. Докажите, что касательная в точке A к первой окружности параллельна прямой BC.

ВверхВниз   Решение


Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120.
Найдите расстояние от центра до общей точки касательных.

ВверхВниз   Решение


Пусть связный плоский граф с V вершинами и E рёбрами разрезает плоскость на F кусков. Докажите формулу Эйлера:  V – E + F = 2.

ВверхВниз   Решение


C — точка на продолжении диаметра AB, CD — касательная, угол ADC равен 110o. Найдите угловую величину дуги BD.

ВверхВниз   Решение


Какие остатки могут получиться при делении  n³ + 3  на  n + 1  при натуральном  n > 2?

ВверхВниз   Решение


Чему равна площадь треугольника со сторонами 18, 17, 35?

ВверхВниз   Решение


Существует ли целое число, произведение цифр которого равно  а) 1980?  б) 1990?  в) 2000?

ВверхВниз   Решение


Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB.
Найдите угол AMB.

Вверх   Решение

Задача 53567
Темы:    [ Угол между касательной и хордой ]
[ Вписанный угол равен половине центрального ]
Сложность: 2+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB.
Найдите угол AMB.


Подсказка

Примените теорему об угле между касательной и хордой.


Ответ

140°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1308

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .