Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Окружность с центром O проходит через вершины A и B треугольника ABC и пересекает сторону AC в точке M и сторону BC в точке N. Углы AOM и BON равны 60o. Расстояния от точки N до прямой AB равно 5$ \sqrt{3}$. Отрезок MN в четыре раза меньше отрезка AB. Найдите площадь треугольника ABC.

Вниз   Решение


Окружность, вписанная в прямоугольный треугольник ABC  (∠ABC = 90°),  касается сторон AB, BC, AC в точках C1, A1, B1 соответственно. Вневписанная окружность касается стороны BC в точке A2. A0 – центр окружности, описанной около треугольника A1A2B1; аналогично определяется точка C0. Найдите угол A0BC0.

ВверхВниз   Решение


Дана незамкнутая ломаная ABCD, причём  AB = CD,  ∠ABC = ∠BCD  и точки A и D расположены по одну сторону от прямой BC. Докажите, что  AD || BC.

ВверхВниз   Решение


Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через середину диагонали AC и пересекает сторону AB в точке M. Найдите отношение AM : AB, если AC = 3BD.

ВверхВниз   Решение


В трапеции ABCD диагонали пересекаются под прямым углом, а одно основание в два раза больше другого. Отношение боковых сторон трапеции равно m. Найдите боковые сторон трапеции, если сумма квадратов диагоналей равна d2.

Вверх   Решение

Задача 54443
Тема:    [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В трапеции ABCD диагонали пересекаются под прямым углом, а одно основание в два раза больше другого. Отношение боковых сторон трапеции равно m. Найдите боковые сторон трапеции, если сумма квадратов диагоналей равна d2.


Ответ

d$ \sqrt{m^{2}+1}$, md$ \sqrt{m^{2}+1}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2207

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .