Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Натуральные числа m1, ..., mn попарно взаимно просты. Докажите, что число  x = (m2...mn)φ(m1)  является решением системы
    x ≡ 1 (mod m1),
    x ≡ 0 (mod m2),
        ...
    x ≡ 0 (mod mn).

Вниз   Решение


Площадь основания пирамиды равна s . Через середину высоты пирамиды проведена плоскость, параллельная плоскости основания. Найдите площадь полученного сечения.

ВверхВниз   Решение


Докажите, что выпуклый 13-угольник нельзя разрезать на параллелограммы.

ВверхВниз   Решение


Имеется замкнутая самопересекающаяся ломаная. Известно, что она пересекает каждое свое звено ровно один раз. Докажите, что число звеньев чётно.

ВверхВниз   Решение


В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.

ВверхВниз   Решение


В параллелограмме ABCD большая сторона AD равна 5. Биссектрисы углов A и B пересекаются в точке M. Найдите площадь параллелограмма, если BM = 2, а cos$ \angle$BAM = $ {\frac{4}{5}}$.

Вверх   Решение

Задача 54495
Темы:    [ Площадь параллелограмма ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В параллелограмме ABCD большая сторона AD равна 5. Биссектрисы углов A и B пересекаются в точке M. Найдите площадь параллелограмма, если BM = 2, а cos$ \angle$BAM = $ {\frac{4}{5}}$.


Подсказка

Докажите, что треугольник AMB — прямоугольный.


Решение

Поскольку $ \angle$BAD + $ \angle$ABC = 180o, то треугольник AMB — прямоугольный. Поэтому

AB = $\displaystyle {\frac{BM}{\sin \angle BAM}}$ = 2 . $\displaystyle {\textstyle\frac{5}{3}}$ = $\displaystyle {\textstyle\frac{10}{3}}$.

По формуле sin 2$ \alpha$ = 2 sin$ \alpha$cos$ \alpha$ находим, что

sin$\displaystyle \angle$BAD = 3 . $\displaystyle {\textstyle\frac{3}{5}}$ . $\displaystyle {\textstyle\frac{4}{5}}$ = $\displaystyle {\textstyle\frac{24}{25}}$.

Следовательно,

SABCD = AD . AB sin$\displaystyle \angle$BAD = 5 . $\displaystyle {\textstyle\frac{10}{3}}$ . $\displaystyle {\textstyle\frac{24}{25}}$ = 16.


Ответ

16.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2259

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .