ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
В трапеции ABCD известно, что
Докажите, что если a, b, c, d, x, y, u, v – вещественные числа и abcd > 0, то (ax + bu)(av + by)(cx + dv)(cu + dy) ≥ (acuvx + bcuxy + advxy + bduvy)(acx + bcu + adv + bdy).
На окружности фиксированы точки A и B, а точка C
перемещается по этой окружности. Найдите множество точек пересечения:
а) высот; б) биссектрис треугольников ABC.
В параллелограмме ABCD сторона AB равна 6, а высота, проведённая к основанию AD, равна 3. Биссектриса угла BAD пересекает сторону BC в точке M, причём MC = 4. N – точка пересечения биссектрисы AM и диагонали BD. Найдите площадь треугольника BNM. |
Задача 55061
УсловиеВ параллелограмме ABCD сторона AB равна 6, а высота, проведённая к основанию AD, равна 3. Биссектриса угла BAD пересекает сторону BC в точке M, причём MC = 4. N – точка пересечения биссектрисы AM и диагонали BD. Найдите площадь треугольника BNM. ПодсказкаТреугольник ABM – равнобедренный. Решение Поскольку ∠AMB = ∠MAD = ∠MAB, то треугольник ABM – равнобедренный, BM = AB = 6. Значит, AD = BC = BM + MC = 10. Из условия SBDM = 9. Ответ27/8. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке