Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

В треугольнике ABC из вершины A проведена прямая, пересекающая сторону BC в точке D, лежащей между точками B и C, причём BD : BC = $ \alpha$ ($ \alpha$ < 1). Через точку D проведена прямая, параллельная стороне AB и пересекающая сторону AC в точке E. Найдите отношение площадей треугольников ABD и ECD.

Вниз   Решение


Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
Найдите, насколько продолжены боковые стороны.

ВверхВниз   Решение


Сторона BC параллелограмма ABCD вдвое больше стороны AB. Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём  MN = 12.
Найдите стороны параллелограмма.

ВверхВниз   Решение


В трапеции большее основание равно 5, одна из боковых сторон равна 3. Известно, что одна из диагоналей перпендикулярна заданной боковой стороне, а другая делит угол между заданной боковой стороной и основанием пополам. Найдите площадь трапеции.

ВверхВниз   Решение


Укажите какое-нибудь целое положительное n, при котором
  а)  1,001n > 10;
  б)  0,999n < 0,1.

ВверхВниз   Решение


На стороне AB треугольника ABC между точками A и B взята точка D, причём AD : AB = $ \alpha$ ($ \alpha$ < 1); на стороне BC между точками B и C взята точка E, причём BE : BC = $ \beta$ ($ \beta$ < 1). Через точку E проведена прямая, параллельная стороне AC и пересекающая сторону AB в точке F. Найдите отношение площадей треугольников BDE и BEF.

ВверхВниз   Решение


Сколько цифр имеет число 2100?

ВверхВниз   Решение


а) В треугольниках ABC и A'B'C' равны стороны AC и A'C', углы при вершинах B и B' и биссектрисы углов B и B'.
Докажите, что эти треугольники равны (точнее говоря, треугольник ABC равен треугольнику A'B'C' или треугольнику C'B'A').
б) Через точку D биссектрисы BB1 угла ABC проведены прямые AA1 и CC1 (точки A1 и C1 лежат на сторонах треугольника).
Докажите, что если  AA1 = CC1,  то  AB = BC.

ВверхВниз   Решение


В параллелограмме ABCD на стороне AB взята точка M, причём  AB = 3AMN – точка пересечения прямых AC и DM.
Найдите отношение площади треугольника AMN к площади всего параллелограмма.

Вверх   Решение

Задача 55062
Темы:    [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В параллелограмме ABCD на стороне AB взята точка M, причём  AB = 3AMN – точка пересечения прямых AC и DM.
Найдите отношение площади треугольника AMN к площади всего параллелограмма.


Подсказка

Найдите отношение  MN : ND.


Решение

Из подобия треугольников AMN и CDN следует, что  MN : ND = AN : NC = AM : CD = 1 : 3.  Поэтому  SAMN = ¾·1/3 SABC = 1/24 SABCD.


Ответ

1 : 24.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3118

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .