ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В последовательности цифр 1234096... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр.
Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии б) Найдите формулу, которая выражает коэффициент в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами. На медиане BM и на биссектрисе BK
треугольника ABC (или на их продолжениях) взяты точки D и
E так, что
DK || AB и
EM || BC. Докажите, что
ED
Точки M и N расположены на стороне BC треугольника ABC, а точка K — на стороне AC, причём BM : MN : NC = 1 : 1 : 2 и CK : AK = 1 : 4. Известно, что площадь треугольника ABC равна 1. Найдите площадь четырёхугольника AMNK.
Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок). В трапеции ABCD основание AB в три раза больше основания CD. На основании CD взята точка M, причём MC = 2MD. N – точка пересечения прямых BM и AC. Найдите отношение площади треугольника MNC к площади всей трапеции. |
Задача 55063
УсловиеВ трапеции ABCD основание AB в три раза больше основания CD. На основании CD взята точка M, причём MC = 2MD. N – точка пересечения прямых BM и AC. Найдите отношение площади треугольника MNC к площади всей трапеции. Решение SADC = 1/3 SABC = ¼ SABCD, поскольку AB = 3 CD. Ответ1 : 33. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке