Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

В последовательности цифр 1234096... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр.
Встретятся ли в этой последовательности подряд четыре цифры 8123?

Вниз   Решение


              1              
            1   1            
          1   1   1          
        1   2   2   1        
      1   3   6   3   1      
    1   5   15   15   5   1    
  1   8   40   60   40   8   1  
1   13   104   260   260   104   13   1

Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов     определяемых равенством

  а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии  

  б) Найдите формулу, которая выражает коэффициент     через     и     (аналогичную равенству б) из задачи 60413).

  в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами.

ВверхВниз   Решение


На медиане BM и на биссектрисе BK треугольника ABC (или на их продолжениях) взяты точки D и E так, что DK || AB и EM || BC. Докажите, что ED$ \bot$BK.

ВверхВниз   Решение


Точки M и N расположены на стороне BC треугольника ABC, а точка K — на стороне AC, причём BM : MN : NC = 1 : 1 : 2 и CK : AK = 1 : 4. Известно, что площадь треугольника ABC равна 1. Найдите площадь четырёхугольника AMNK.

ВверхВниз   Решение


Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок).
Докажите, что AM – биссектриса угла BAC.

ВверхВниз   Решение


В трапеции ABCD основание AB в три раза больше основания CD. На основании CD взята точка M, причём  MC = 2MDN – точка пересечения прямых BM и AC. Найдите отношение площади треугольника MNC к площади всей трапеции.

Вверх   Решение

Задача 55063
Темы:    [ Отношение площадей треугольников с общим углом ]
[ Трапеции (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В трапеции ABCD основание AB в три раза больше основания CD. На основании CD взята точка M, причём  MC = 2MDN – точка пересечения прямых BM и AC. Найдите отношение площади треугольника MNC к площади всей трапеции.


Решение

  SADC = 1/3 SABC = ¼ SABCD,  поскольку  AB = 3 CD.
  Из подобия треугольников MNC и BNA следует, что  MN : NB = MC : AB = 2 : 9.
  Поэтому  SMNC = 2/3·2/11 SADC = 1/33 SABCD.


Ответ

1 : 33.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3119

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .