ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Император пригласил на праздник 2015 волшебников, добрых и злых, при этом волшебники знают, кто добрый и кто злой, а император – нет. Добрый волшебник всегда говорит правду, а злой говорит что угодно. На празднике император сначала выдаёт каждому волшебнику по бумажке с вопросом (требующим ответа "да" или "нет"), затем волшебники отвечают, и после всех ответов император одного изгоняет. Волшебник выходит в заколдованную дверь, и император узнаёт, добрый он был или злой. После этого император вновь выдаёт каждому из оставшихся волшебников по бумажке с вопросом, вновь одного изгоняет, и так далее, пока император не решит остановиться (это возможно после любого из ответов, и после остановки можно никого не изгонять). Докажите, что император может изгнать всех злых волшебников, удалив при этом не более одного доброго.
Докажите, что правильный треугольник можно
разрезать на n правильных треугольников для любого n, начиная
с шести.
Даны угол и внутри его точки A и B. Постройте
параллелограмм, для которого точки A и B — противоположные
вершины, а две другие вершины лежат на сторонах угла.
Пусть в начальный момент времени возбуждена только одна клетка. Сколько клеток будет находится в возбужденном состоянии через
Найдите все натуральные $n$, удовлетворяющие условию: числа $1, 2, 3, \ldots, 2n$ можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа. а) Группа людей прошла опрос, состоящий из 20 вопросов, на каждый из которых возможно два ответа. После опроса оказалось, что для любых 10 вопросов и любой комбинации ответов на эти вопросы существует человек, давший именно эти ответы на эти вопросы. Обязательно ли найдутся два человека, у которых ответы ни на один вопрос не совпали? В пространстве заданы четыре точки, не лежащие в одной плоскости.
С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.
|
Задача 55712
Условие
С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.
Подсказка
Рассмотрите симметрию относительно данной точки A.
Решение
Предположим, что нужная прямая проведена. Пусть PA = QA — равные хорды окружностей S1 и S2, лежащие на этой прямой. При симметрии относительно точки A точка P переходит в точку Q, а окружность S1 — в равную ей окружность S, проходящую через точку Q. Отсюда вытекает следующий способ построения. Строим окружность S, симметричную данной окружности S1 относительно данной точки A. Точка пересечения окружностей S и S2, отличная от A, лежит на искомой прямой.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке