ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56460
Темы:    [ Замечательное свойство трапеции ]
[ Средняя линия треугольника ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Прямая, соединяющая точку P пересечения диагоналей четырёхугольника ABCD с точкой Q пересечения прямых AB и CD, делит сторону AD пополам.
Докажите, что она делит пополам и сторону BC.


Решение

Точка P лежит на медиане QM треугольника AQD (или на её продолжении). Легко проверить, что утверждение задачи 53859 остается верным и в случае, когда точка P лежит на продолжении медианы. Следовательно,  BC || AD.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 1
Название Отрезки, заключенные между параллельными прямыми
Тема Отрезки, заключенные между параллельными прямыми
задача
Номер 01.005
web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1625

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .