|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть a, b, c – длины сторон BC, AC, AB треугольника ABC, γ = ∠C. Докажите, что c ≥ (a + b) sin γ/2. |
Задача 56469
УсловиеПусть M и N – середины сторон AD и BC прямоугольника ABCD. На продолжении отрезка DC за точку D взята точка P, Q – точка пересечения прямых PM и AC. Докажите, что ∠QNM = ∠MNP. РешениеПусть прямая, проходящая через центр O данного прямоугольника
параллельно BC, пересекает отрезок QN в точке K (см. рис.).
Так как MO || PC, то Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|