Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Найдите геометрическое место точек, сумма расстояний от которых до двух данных прямых имеет данную величину.

Вниз   Решение


Углы треугольника равны α, β и γ, а периметр равен P. Найдите стороны треугольника.

ВверхВниз   Решение


Длины сторон параллелограмма равны a и b, длины диагоналей — m и n. Докажите, что  a4 + b4 = m2n2 тогда и только тогда, когда острый угол параллелограмма равен  45o.

ВверхВниз   Решение


В треугольнике ABC угол B равен 60o, биссектрисы AD и CE пересекаются в точке O. Докажите, что OD = OE.

ВверхВниз   Решение


Постройте прямоугольный треугольник по гипотенузе и точке, в которой её касается вписанная окружность.

ВверхВниз   Решение


Докажите, что предельная точка пучка является общей точкой окружностей ортогонального пучка, и наоборот.

Вверх   Решение

Задача 56738
Тема:    [ Радикальная ось ]
Сложность: 5
Классы: 9
Из корзины
Прислать комментарий

Условие

Докажите, что предельная точка пучка является общей точкой окружностей ортогонального пучка, и наоборот.

Решение

Точка O является предельной точкой пучка тогда и только тогда, когда её степень относительно любой окружности ортогонального пучка равна 0, т.е. точка O принадлежит любой окружности ортогонального пучка. Ясно также, что пучок, ортогональный ортогональному пучку, совпадает с исходным пучком.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 3
Название Окружности
Тема Окружности
параграф
Номер 11
Название Пучки окружностей
Тема Радикальная ось
задача
Номер 03.075B

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .