Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

a, b, c > 0  и  abc = 1.  Известно, что   a + b + c > 1/a + 1/b + 1/c.  Докажите, что ровно одно из чисел a, b, c больше 1.

Вниз   Решение


В Театре собираются поставить грандиозную пьесу из двух актов, в которой освещение имеет большое значение. Сцена театра имеет форму выпуклого многоугольника, заданного вершинами в декартовой прямоугольной системе координат. Над сценой находится прожектор, который может перемещаться над ней произвольным образом. Находясь в некоторой точке, прожектор освещает круглую область с центром в этой точке и радиусом R.

В первом акте на сцене лежат квадратные ковры размером HxH, стороны которых параллельны осям координат. Ковры могут частично выходить за пределы сцены. Рассмотрим фигуру, которая состоит из всех точек, находясь в которых, прожектор не освещает ни один из ковров и не освещает территорию вне сцены. Обозначим ее площадь как S1.

Перед вторым актом ковры убирают со сцены. Рассмотрим фигуру, которая состоит из всех точек, находясь в которых прожектор не освещает территорию вне сцены. Ее площадь обозначим как S2.

Задание

По предоставленным входным файлам, каждый из которых описывает сцену и размещение на ней ковров в первом акте, создайте соответствующие им выходные файлы, которые содержат площади S1 и S2 описанных выше фигур.

Входные данные

На вашем диске в каталоге DATA содержатся 10 файлов, которые имеют названия THEATER.D01, THEATER.D02, : , THEATER.D10, следующего формата.

В первой строке заданы числа R, H, N, M. Где R - радиус области, которую освещает прожектор. - длина стороны квадрата, который представляет ковер. N - количество вершин выпуклого многоугольника, который задает сцену. M - количество ковров. Во второй строке находятся N пар чисел - координаты вершин многоугольника в порядке обхода (по или против часовой стрелки). В третьей строке находятся M пар чисел - координаты центров ковров.

Выходные данные

Создайте 10 выходных файлов THEATER.S01, THEATER.S02, : , THEATER.S10 в вашем каталоге на дискете. Эти файлы должны содержать ответы для соответствующих входных файлов.

Каждый файл должен содержать два числа - целые части площадей S1 и S2. Вам не нужно сдавать программу! Баллы будут начисляться за файлы с правильными ответами.

Пример входных и выходных данных

THEATER.D00

THEATER.S00

0.5 2 4 1

1 1 5 1 5 4 1 4

3 4

3 6

ВверхВниз   Решение


а) Пусть  $ \alpha$,$ \beta$ и $ \gamma$ — произвольные углы, причем сумма любых двух из них меньше  180o. На сторонах треугольника ABC внешним образом построены треугольники  A1BC, AB1C и ABC1, имеющие при вершинах A, B и C углы  $ \alpha$,$ \beta$ и $ \gamma$. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
б) Докажите аналогичное утверждение для треугольников, построенных на сторонах треугольника ABC внутренним образом.

ВверхВниз   Решение


Максимальное время работы на одном тесте: 1 секунда

Максимальный объем используемой памяти: 64 мегабайта

По случаю введения больших новогодних каникул устраивается великий праздничный бал-маскарад. До праздника остались считанные дни, поэтому срочно нужны костюмы для участников. Для пошивки костюмов требуется L метров ткани. Ткань продается в N магазинах, в которых предоставляются скидки оптовым покупателям. В магазинах можно купить только целое число метров ткани. Реклама магазина номер i гласит: "Мы с радостью продадим Вам метр ткани за Pi бурлей, однако если Вы купите не менее Ri метров, то получите прекрасную скидку - каждый купленный метр обойдется Вам всего в Qi бурлей". Чтобы воплотить в жизнь лозунг "экономика страны должна быть экономной", правительство решило потратить на закупку ткани для костюмов минимальное количество бурлей из государственной казны. При этом ткани можно купить больше, чем нужно, если так окажется дешевле. Ответственный за покупку ткани позвонил в каждый магазин и узнал, что:

1) реклама каждого магазина содержит правдивую информацию о ценах и скидках;

2) магазин номер i готов продать ему не более Fi метров ткани.

Ответственный за покупку очень устал от проделанной работы и поэтому поставленную перед ним задачу <закупить ткань за минимальные деньги> переложил на своих помощников. Напишите программу, которая определит, сколько ткани нужно купить в каждом из магазинов так, чтобы суммарные затраты были минимальны.

Формат входных данных

В первой строке входного файла c.in записаны два целых числа N и L (1 £ N £ 100, 0 £ L £ 100). В каждой из последующих N строк находится описание магазина номер i - 4 целых числа Pi, Ri, Qi, Fi (1 £ Qi £ Pi £ 1000, 1 £ Ri £ 100, 0 £ Fi £ 100).

Формат выходных данных

Первая строка выходного файла c.out должна содержать единственное число - минимальное необходимое количество бурлей.

Во второй строке выведите N чисел, разделенных пробелами, где i-е число определяет количество метров ткани, которое нужно купить в i-м магазине. Если в i-м магазине ткань покупаться не будет, то на i-м месте должно стоять число 0. Если вариантов покупки несколько, выведите любой из них.

Если ткани в магазинах недостаточно для пошивки костюмов, выходной файл должен содержать единственное число -1.

Примеры

c.in

c.out

2 14

7 9 6 10

7 8 6 10

88

10 4

1 20

1 1 1 1

-1

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1 так, что отрезки AA1, BB1 и CC1 пересекаются в одной точке. Прямые A1B1 и A1C1 пересекают прямую, проходящую через вершину A параллельно стороне BC, в точках C2 и B2 соответственно. Докажите, что AB2 = AC2.

Вверх   Решение

Задача 56919
Тема:    [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9
Из корзины
Прислать комментарий

Условие

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1 так, что отрезки AA1, BB1 и CC1 пересекаются в одной точке. Прямые A1B1 и A1C1 пересекают прямую, проходящую через вершину A параллельно стороне BC, в точках C2 и B2 соответственно. Докажите, что AB2 = AC2.

Решение

Так как  $ \triangle$AC1B2 $ \sim$ $ \triangle$BC1A1 и  $ \triangle$AB1C2 $ \sim$ $ \triangle$CB1A1, то  AB2 . C1B = AC1 . BA1 и  AC2 . CB1 = A1C . B1A. Поэтому

$\displaystyle {\frac{AB_2}{AC_2}}$ = $\displaystyle {\frac{AC_1}{C_1B}}$ . $\displaystyle {\frac{BA_1}{A_1C}}$ . $\displaystyle {\frac{CB_1}{B_1A}}$ = 1.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 8
Название Теорема Чевы
Тема Теоремы Чевы и Менелая
задача
Номер 05.074

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .