Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что с помощью поворота

x'' = x'cosφ + y'sinφ,    y'' = - x'sinφ + y'cosφ

в уравнении ax'2 + 2bx'y' + cy'2 = f' коэффициент при x'y' можно сделать равным нулю.

Вниз   Решение


Разложите на множители с действительными коэффициентами многочлены:

а) x4 + 4; ж) (a + b + c)3a3b3c3;
б) 2x3 + x2 + x – 1; з) (xy)5 + (y - z)5 + (zx)5;
в) x10 + x5 + 1; и) a8 + a6b2 + a4b4 + a2b6 + b8;
г) a3 + b3 + c3 – 3abc; к) (x2 + x + 1)2 + 3x(x2 + x + 1) + 2x2;
д) x3 + 3xy + y3 – 1; л) a4 + b4 + c4 - 2a2b2 – 2a2c2 – 2b2c2;
е) x2y2x2 + 4xyy2 + 1; м) (x + 1)(x + 3)(x + 5)(x + 7) + 15.

Вверх   Решение

Задача 56950
Тема:    [ Подерный (педальный) треугольник ]
Сложность: 5
Классы: 9
В корзину
Прислать комментарий

Условие

Прямые AP, BP и CP пересекают описанную окружность треугольника ABC в точках A2, B2 и C2A1B1C1 — подерный треугольник точки P относительно треугольника ABC (см. задачу 5.99). Докажите, что  $ \triangle$A1B1C1 $ \sim$ $ \triangle$A2B2C2.

Решение

Эта задача является частным случаем задачи 2.43.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 10
Название Подерный треугольник
Тема Подерный (педальный) треугольник
задача
Номер 05.100

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .