ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Автор: Анджанс А.

В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а каждые двое встречались в вылазках ровно по разу.
Докажите, что один из террористов участвовал не менее чем в 11 различных вылазках.

Вниз   Решение


Треугольник имеет площадь, равную 1. Докажите, что длина его средней по длине стороны не меньше, чем $\sqrt {2}$.

ВверхВниз   Решение


Каждая из сторон выпуклого четырехугольника разделена на пять равных частей и соответствующие точки противоположных сторон соединены (см. рис.). Докажите, что площадь среднего (заштрихованного) четырехугольника в 25 раз меньше площади исходного.


ВверхВниз   Решение


Дан треугольник ABC. На продолжении стороны AC за точку C взята точка N, причём  CN = 2/3 AC.  Точка K находится на стороне AB, причём  AK : KB = 3 : 2.
В каком отношении прямая KN делит сторону BC?

ВверхВниз   Решение


Все рёбра правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1 равны 4. На ребре EE1 взята точка K так, что E1K= , а на ребре FF1 – точка L так, что F1L= . Найдите наименьшее возможное значение суммы AP+PQ , где точка P принадлежит отрезку B1F1 , а точка Q – отрезку KL .

ВверхВниз   Решение


Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если:
  а)  ∠A = 50°,  ∠B = 100°;
  б)  ∠A = α,  ∠B = β;
  в)  ∠C = 130°;
  г)  ∠C = γ.

ВверхВниз   Решение


Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причём  AM : MB = 1 : 2,  AN : NC = 3 : 2.  Прямая MN пересекает продолжение стороны BC в точке F. Найдите  CF : BC.

ВверхВниз   Решение


В шахматном турнире участвовало 8 человек, и в итоге они набрали разное количество очков (каждый играл с каждым один раз, победа – 1 очко, ничья – 0,5 очка, поражение – 0). Шахматист, занявший второе место, набрал столько же очков, сколько четверо последних набрали вместе.
Как сыграли между собой шахматисты, занявшие третье и седьмое места?

ВверхВниз   Решение


Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля?  ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)

ВверхВниз   Решение


Автор: Анджанс А.

Десятичные записи натуральных чисел выписаны подряд, начиная с единицы, до некоторого n включительно:   12345678910111213...(n).
Существует ли такое n, что в этой записи все десять цифр встречаются одинаковое количество раз?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 56949

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 3
Классы: 9

Пусть A1, B1 и C1 - основания перпендикуляров, опущенных из точки P на прямые BC, CA и AB. Треугольник A1B1C1 называют подерным (или педальным) треугольником точки P относительно треугольника ABC.
Пусть A1B1C1 — подерный треугольник точки P относительно треугольника ABC. Докажите, что  B1C1 = BC . AP/2R, где R — радиус описанной окружности треугольника ABC.
Прислать комментарий     Решение


Задача 108130

Темы:   [ Подерный (педальный) треугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки подобия ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC отмечена точка O и из неё опущены перпендикуляры OA1, OB1, OC1 на стороны BC, AC, AB соответственно. Пусть A2, B2, C2 – вторые точки пересечения прямых AO, BO, CO с описанной окружностью треугольника ABC. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.

Прислать комментарий     Решение

Задача 56950

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 5
Классы: 9

Прямые AP, BP и CP пересекают описанную окружность треугольника ABC в точках A2, B2 и C2A1B1C1 — подерный треугольник точки P относительно треугольника ABC (см. задачу 5.99). Докажите, что  $ \triangle$A1B1C1 $ \sim$ $ \triangle$A2B2C2.
Прислать комментарий     Решение


Задача 56951

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 5
Классы: 9

Внутри остроугольного треугольника ABC дана точка P. Опустив из нее перпендикуляры PA1, PB1 и PC1 на стороны, получим  $ \triangle$A1B1C1. Проделав для него ту же операцию, получим  $ \triangle$A2B2C2, а затем  $ \triangle$A3B3C3. Докажите, что  $ \triangle$A3B3C3 $ \sim$ $ \triangle$ABC.
Прислать комментарий     Решение


Задача 56952

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 6
Классы: 9

Треугольник ABC вписан в окружность радиуса R с центром O. Докажите, что площадь подерного треугольника точки P относительно треугольника ABC (см. задачу 5.99) равна  $ {\frac{1}{4}}$$ \left\vert\vphantom{1-\frac{d^2}{R^2}}\right.$1 - $ {\frac{d^2}{R^2}}$$ \left.\vphantom{1-\frac{d^2}{R^2}}\right\vert$SABC, где d = PO.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .