ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что любой остроугольный треугольник
площади 1 можно поместить в прямоугольный треугольник площади Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов. Докажите справедливость формулы На сторонах правильного треугольника ABC как на основаниях внутренним образом построены равнобедренные треугольники A1BC, AB1C и ABC1 с углами α, β и γ при основаниях, причём α + β + γ = 60°. Прямые BC1 и B1C пересекаются в точке A2, AC1 и A1C – в точке B2, AB1 и A1B – в точке C2. Докажите, что углы треугольника A2B2C2 равны 3α, 3β и 3γ. Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус
описанной окружности треугольника со сторонами Напечатать в порядке возрастания все простые несократимые дроби, заключенные между 0 и 1, знаменатели которых не превышают 7. В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами. Докажите, что для любого натурального a найдётся такое натуральное n, что все числа n + 1, nn + 1, nnn + 1, ... делятся на a. Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100. Докажите, что в любой выпуклый многоугольник
площади 1 можно поместить треугольник, площадь которого не меньше:
а) 1/4; б) 3/8.
|
Задача 57362
УсловиеДокажите, что в любой выпуклый многоугольник
площади 1 можно поместить треугольник, площадь которого не меньше:
а) 1/4; б) 3/8.
Решениеа) Заключим многоугольник в полосу, образованную
параллельными прямыми. Будем сдвигать эти прямые параллельно
до тех пор, пока на каждую из них не попадут некоторые вершины A
и B многоугольника. Затем проделаем то же самое для полосы,
образованной прямыми, параллельными AB. На эти прямые попадут
некоторые вершины C и D (рис.). Исходный многоугольник
заключен в параллелограмм, поэтому площадь этого параллелограмма
не меньше 1. С другой стороны, сумма площадей треугольников ACB
и ADB равна половине площади параллелограмма, поэтому площадь одного
из этих треугольников не меньше 1/4.
б) Как и в задаче а), заключим многоугольник в полосу, образованную параллельными прямыми, так, чтобы вершины A и B лежали на этих прямых (рис.). Пусть ширина этой полосы равна d. Проведем три прямые, делящие эту полосу на равные полосы шириной d /4. Пусть первая и третья прямые пересекают стороны многоугольника в точках K, L и M, N соответственно. Продолжим стороны, на которых лежат точки K, L, M и N, до пересечения со сторонами исходной полосы и с прямой, делящей ее пополам. При этом образуются две трапеции со средними линиями KL и MN, высоты которых равны d /2. Так как эти трапеции покрывают весь многоугольник, сумма их площадей не меньше его площади, т. е. (d . KL + d . MN)/2 Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке