ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть многочлен  P(x) = xn + an–1xn–1 + ... + a1x + a0  имеет корни  x1, x2, ..., xn,  то есть  P(x) = (xx1)(xx2)...(x – xn).  Рассмотрим многочлен
Q(x) = P(x)P(– x).  Докажите, что
  а) многочлен Q(x) имеет степень 2n и содержит только чётные степени переменной x;
  б) функция Q() является многочленом с корнями  

   Решение

Задача 57456
Тема:    [ Неравенства для углов треугольника ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

Докажите, что sin($ \gamma$/2) $ \leq$ c/(a + b).

Решение

Опустим из вершин A и B перпендикуляры AA1 и BB1 на биссектрису угла ACB. Тогда  AB $ \geq$ AA1 + BB1 = b sin($ \gamma$/2) + a sin($ \gamma$/2).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 7
Название Неравенства для углов треугольника
Тема 317
задача
Номер 10.046

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .