ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57477
Темы:    [ Геометрические неравенства (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8
В корзину
Прислать комментарий

Условие

Автор: Фольклор

В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. В области, ограниченной отрезками AB, AC и меньшей дугой BC, расположен отрезок. Докажите, что его длина не превышает AB.


Решение

Если данный отрезок не имеет общих точек с окружностью, то с помощью гомотетии с центром A (и коэффициентом больше 1) его можно перевести в отрезок, имеющий общую точку X с дугой BC и лежащий в нашей области. Проведём через точку X касательную DE к окружности (точки D и E лежат на отрезках AB и AC). Тогда отрезки AD и AE меньше AB и  DE < ½ (DE + AD + AE) = AB,  то есть все стороны треугольника ADE меньше AB. Так как наш отрезок лежит внутри треугольника ADE (или на его стороне DE), то его длина не превосходит AB (см. задачу 57475 а).

Замечания

3 балла

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4273
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 10
Название Отрезок внутри треугольника меньше наибольшей стороны
Тема Отрезок внутри треугольника меньше наибольшей стороны
задача
Номер 10.066
олимпиада
Название Турнир городов
Турнир
Номер 15
Дата 1993/1994
вариант
Вариант осенний тур, основной вариант, 10-11 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .