ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 57477

Темы:   [ Геометрические неравенства (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8

Автор: Фольклор

В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. В области, ограниченной отрезками AB, AC и меньшей дугой BC, расположен отрезок. Докажите, что его длина не превышает AB.

Прислать комментарий     Решение

Задача 57475

Тема:   [ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 3+
Классы: 8

а) Внутри треугольника ABC расположен отрезок MN. Докажите, что длина MN не превосходит наибольшей стороны треугольника.
б) Внутри выпуклого многоугольника расположен отрезок MN. Докажите, что длина MN не превосходит наибольшей стороны или наибольшей диагонали этого многоугольника.
Прислать комментарий     Решение


Задача 57476

Тема:   [ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 4+
Классы: 8

Внутри сектора AOB круга радиуса R = AO = BO лежит отрезок MN. Докажите, что MN $ \leq$ R или MN $ \leq$ AB. (Предполагается, что  $ \angle$AOB < 180o.)
Прислать комментарий     Решение


Задача 57478

Тема:   [ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 5
Классы: 8

Внутри окружности расположен выпуклый пятиугольник. Докажите, что хотя бы одна из его сторон не больше стороны правильного пятиугольника, вписанного в эту окружность.
Прислать комментарий     Решение


Задача 57479

Тема:   [ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 5
Классы: 8

Даны треугольник ABC со сторонами a > b > c и произвольная точка O внутри его. Пусть прямые  AO, BO, CO пересекают стороны треугольника в точках P, Q, R. Докажите, что  OP + OQ + OR < a.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .