Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Пусть a и b – действительные числа. Определим показательную функцию на множестве комплексных чисел равенством     Докажите формулу Эйлера:   ea+ib = ea(cos b + i sin b).

Вниз   Решение


Найдите значение дроби В*А*Р*Е*Н*Ь*Е / К*А*Р*Л*С*О*Н, где разные буквы – это разные цифры, а между буквами стоит знак умножения.

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты  AA1, BB1 и CC1. Докажите, что периметр треугольника A1B1C1 не превосходит половины периметра треугольника ABC.

Вверх   Решение

Задача 57489
Тема:    [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8
Из корзины
Прислать комментарий

Условие

В остроугольном треугольнике ABC проведены высоты  AA1, BB1 и CC1. Докажите, что периметр треугольника A1B1C1 не превосходит половины периметра треугольника ABC.

Решение

Согласно задаче 1.59 отношение периметров треугольников A1B1C1 и ABC равно r/R. Кроме того, r $ \leq$ R/2 (задача 10.26).
Замечание. Используя результат задачи 12.72, легко проверить, что SA1B1C1/SABC = r1/2R1 $ \leq$ 1/4.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 12
Название Неравенства для остроугольных треугольников
Тема Неравенства для остроугольных треугольников
задача
Номер 10.078

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .