ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57662
Темы:    [ Метод координат на плоскости ]
[ Гомотетичные окружности ]
[ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

В треугольнике ABC угол C прямой. Докажите, что при гомотетии с центром C и коэффициентом 2 вписанная окружность переходит в окружность, касающуюся описанной окружности.

Решение

Пусть d — расстояние от центра описанной окружности до образа центра вписанной окружности при рассматриваемой гомотетии. Достаточно проверить, что R = d + 2r. Пусть  (0, 0),(2a, 0) и (0, 2b) — координаты вершин данного треугольника. Тогда (a, b) — координаты центра описанной окружности, (r, r) — координаты центра вписанной окружности, причем r = a + b - R. Следовательно,  d2 = (2r - a)2 + (2r - b)2 = a2 + b2 - 4r(a + b - r) + 4r2 = (R - 2r)2, так как  a2 + b2 = R2.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 12
Название Вычисления и метрические соотношения
Тема Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
параграф
Номер 10
Название Метод координат
Тема Метод координат
задача
Номер 12.077

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .