ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В выпуклом пятиугольнике ABCDE с единичными сторонами середины P, Q сторон AB, CD и середины S, T сторон BC, DE соединены отрезками PQ и ST. Пусть M и N – середины отрезков PQ и ST. Найдите длину отрезка MN. На окружности отметили 4n точек и окрасили их
через одну в красный и синий цвета. Точки каждого цвета
разбили на пары, а точки каждой пары соединили отрезками
того же цвета. Докажите, что если никакие три отрезка не
пересекаются в одной точке, то найдется по крайней мере n
точек пересечения красных отрезков с синими.
Верно ли, что из любого выпуклого четырёхугольника можно вырезать три уменьшенные вдвое копии этого четырёхугольника? На клетчатой бумаге даны произвольные n клеток.
Докажите, что из них можно выбрать не менее n/4 клеток,
не имеющих общих точек.
|
Задача 58191
УсловиеНа клетчатой бумаге даны произвольные n клеток.
Докажите, что из них можно выбрать не менее n/4 клеток,
не имеющих общих точек.
РешениеРаскрасим клетчатую бумагу в четыре цвета, как показано
на рис. Среди данных n клеток найдется не менее n/4 одноцветных
клеток, а одноцветные клетки не имеют общих точек.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке