ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри выпуклого четырехугольника ABCD построены равнобедренные
прямоугольные треугольники ABO1, BCO2, CDO3
и DAO4. Докажите, что если O1 = O3, то O2 = O4.
На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2.
Докажите, что если окружности, описанные около треугольников A1B1C1,
A1B2C2, A2B1C2, A2B2C1,
проходят через одну точку, то и окружности, описанные около треугольников
A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через
одну точку.
Пусть точки A, B, C и D лежат на конике, заданной уравнением второй степени f = 0. Докажите, что
f =
где Перед Алёшей 100 закрытых коробочек, в каждой – либо красный, либо синий кубик. У Алёши на счету есть рубль. Он подходит к любой закрытой коробочке, объявляет цвет и ставит любую сумму (можно нецелое число копеек, но не больше, чем у него на счету в данный момент). Коробочка открывается, и Алёшин счет увеличивается или уменьшается на поставленную сумму в зависимости от того, угадан или не угадан цвет кубика. Игра продолжается, пока не будут открыты все все коробочки. Какую наибольшую сумму на счету может гарантировать себе Алёша, если ему известно, что Даны четыре окружности S1, S2, S3, S4. Пусть S1
и S2 пересекаются в точках A1 и A2, S2 и S3 —
в точках B1 и B2, S3 и S4 — в точках C1 и C2,
S4 и S1 — в точках D1 и D2 (рис.). Докажите, что
если точки A1, B1, C1, D1 лежат на одной окружности S
(или прямой), то и точки A2, B2, C2, D2
лежат на одной окружности (или прямой).
Триангуляцией многоугольника называют его разбиение
на треугольники, обладающее тем свойством, что эти треугольники
либо имеют общую сторону, либо имеют общую вершину,
либо не имеют общих точек (т. е. вершина одного треугольника
не может лежать на стороне другого). Докажите, что
треугольники триангуляции можно раскрасить в три цвета так,
что имеющие общую сторону треугольники будут разного цвета.
|
Задача 58199
УсловиеТриангуляцией многоугольника называют его разбиение
на треугольники, обладающее тем свойством, что эти треугольники
либо имеют общую сторону, либо имеют общую вершину,
либо не имеют общих точек (т. е. вершина одного треугольника
не может лежать на стороне другого). Докажите, что
треугольники триангуляции можно раскрасить в три цвета так,
что имеющие общую сторону треугольники будут разного цвета.
РешениеДокажем это утверждение индукцией по числу треугольников триангуляции.
Для одного треугольника требуемая раскраска существует. Предположим
теперь, что можно раскрасить требуемым образом любую триангуляцию,
состоящую менее чем из n треугольников, и докажем, что тогда можно
раскрасить любую триангуляцию, состоящую из n треугольников. Выбросим
треугольник, одна из сторон которого лежит на стороне триангулированной
фигуры. Оставшуюся часть можно раскрасить по предположению индукции
(она, конечно, может состоять из нескольких кусков, но это не мешает).
У выброшенного треугольника только две стороны могут граничить с остальными
треугольниками. Поэтому его можно окрасить в цвет, отличный от
цветов двух соседних с ним треугольников.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке