Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Автор: Храбров А.

Сумма положительных чисел a, b, c и d равна 3. Докажите неравенство   1/a³ + 1/b³ + 1/c³ + 1/d³1/a³b3c³d³.

Вниз   Решение


Решите уравнение  

ВверхВниз   Решение


Дан выпуклый четырёхугольник ABCD. Середины сторон AB и CD обозначим соответственно через K и M, точку пересечения AM и DK — через O, точку пересечения BM и CK — через P. Доказать, что площадь четырёхугольника MOKP равна сумме площадей треугольников BPC и AOD.

ВверхВниз   Решение


Боковое ребро правильной треугольной призмы равно высоте основания, а площадь сечения, проведённого через это боковое ребро и высоту основания, равна Q . Найдите объём призмы.

ВверхВниз   Решение


Выразите через a и b действительный корень уравнения  x³ – a³ – b³ – 3abx = 0.
Найдите представления для двух комплексных корней этого уравнения.

ВверхВниз   Решение


а) Докажите, что для любого параллелограмма существует эллипс, касающийся сторон параллелограмма в их серединах.
б) Докажите, что для любого треугольника существует эллипс, касающийся сторон треугольника в их серединах.

Вверх   Решение

Задача 58477
Тема:    [ Кривые второго порядка ]
Сложность: 3
Классы: 10
Из корзины
Прислать комментарий

Условие

а) Докажите, что для любого параллелограмма существует эллипс, касающийся сторон параллелограмма в их серединах.
б) Докажите, что для любого треугольника существует эллипс, касающийся сторон треугольника в их серединах.

Решение

Любой параллелограмм является образом квадрата при аффинном преобразовании, а любой треугольник — образом правильного треугольника.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 31
Название Эллипс, парабола, гипербола
Тема Неопределено
параграф
Номер 2
Название Эллипс
Тема Кривые второго порядка
задача
Номер 31.010

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .