Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Шень А.Х.

Кресла для зрителей вдоль лыжной трассы занумерованы по порядку: 1, 2, 3, ..., 1000. Кассирша продала n билетов на все первые 100 мест, но n больше 100, так как на некоторые места она продала больше одного билета (при этом  n < 1000).  Зрители входят на трассу по одному.Каждый, подойдя к своему месту, занимает его, если оно свободно, если же занято, говорит "Ох!", идёт в сторону роста номеров до первого свободного места и занимает его. Каждый раз, обнаружив очередное место занятым, он говорит "Ох!". Докажите, что число "охов" не зависит от того, в каком порядке зрители выходят на трассу.

Вниз   Решение


а) В треугольник ABC вписаны треугольники A1B1C1 и A2B2C2 так, что  C1A1BCA1B1CAB1C1ABB2A2BCC2B2CA,
A2C2AB.  Докажите, что эти треугольники равны.

б) Внутри треугольника ABC взяли точки A1, B1, C1, A2, B2, C2 так, что A1 - на отрезке AB1, B1 - на отрезке BC1, C1 – на отрезке CA1, A2 – на отрезке AC2, B2 – на отрезке BA2, C2 – на отрезке CB2 и углы BAA1, CBB1, ACC1, CAA2, ABB2, BCC2 равны. Докажите, что треугольники A1B1C1 и A2B2C2 равны.

ВверхВниз   Решение


Последовательность (an) задана условиями a1= 1000000 , an+1=n[]+n . Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.

ВверхВниз   Решение


a, b, c – целые числа, причём  a + b + c  делится на 6. Докажите, что  a³ + b³ + c³  тоже делится на 6.

ВверхВниз   Решение


Целые неотрицательные числа x и y удовлетворяют равенству   x² – mxy + y² = 1   (1)   тогда и только тогда, когда x и y – соседние члены последовательности  (2):  a0 = 0,  a1 = 1,  a2 = ma3 = m² – 1,  a4 = m³ – 2ma5 = m4 – 3m² + 1,  ...,  в которой  ak+1 = mak – ak–1  для любого  k 0.  Докажите это.

ВверхВниз   Решение


К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

ВверхВниз   Решение


Найдите суммы
  а)   1·n + 2(n – 1) + 3(n – 2) + ... + n·1.
  б)   Sn,k = (1·2·...·k)·(n(n – 1)...(nk + 1)) + (2·3·...·(k + 1))·((n – 1)(n – 2)...(nk)) + ... + ((nk + 1)(nk + 2)...·n)·(k(k – 1)·...·1).

ВверхВниз   Решение


Доказать, что последовательность xn = sin(n2) не стремится к нулю при n, стремящемся к бесконечности.

ВверхВниз   Решение


Докажите, что высота прямоугольного треугольника, опущенная на гипотенузу, равна произведению катетов, делённому на гипотенузу.

ВверхВниз   Решение


Автор: Шень А.Х.

Вдоль лыжной трассы расставлено в ряд бесконечное число кресел, занумерованных по порядку: 1, 2, 3, ... Кассирша продала билеты на первые m мест, но на некоторые места она продала не один билет, и общее число проданных билетов  n > m.  Зрители входят на трассу по одному. Каждый, подходя к месту, указанному на его билете, занимает его, если оно свободно, а если оно занято, говорит "Ох!" и идёт к следующему по номеру месту. Если оно свободно, то занимает его, если же занято, снова говорит "Ох!" и двигается дальше – до первого свободного места. Докажите, что общее количество "охов" не зависит от того, в каком порядке зрители выходят на трассу.

ВверхВниз   Решение


Окружность, построенная на высоте AD прямоугольного треугольника ABC как на диаметре, пересекает катет AB в точке K, а катет AC — в точке M. Отрезок KM пересекает высоту AD в точке L. Известно, что отрезки AK, AL и AM составляют геометрическую прогрессию (т.е. $ {\frac{AK}{AL}}$ = $ {\frac{AL}{AM}}$). Найдите острые углы треугольника ABC.

ВверхВниз   Решение


В очереди к стоматологу стоят 30 ребят: мальчиков и девочек. Часы на стене показывают 8:00. Как только начинается новая минута, каждый мальчик, за которым стоит девочка, пропускает её вперед. Докажите, что перестановки в очереди закончатся до 8:30, когда откроется дверь кабинета.

ВверхВниз   Решение


При каких значениях n все коэффициенты в разложении бинома Ньютона  (a + b)n  нечётны?

Вверх   Решение

Задача 60411
Темы:    [ Треугольник Паскаля и бином Ньютона ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

При каких значениях n все коэффициенты в разложении бинома Ньютона  (a + b)n  нечётны?


Решение

  Назовём строку треугольника Паскаля хорошей, если в ней все числа, кроме крайних, чётны. Пусть n-я строка хорошая. Это значит, что
(x + 1)n = xn + 1 + 2f(x),  где f(x) – многочлен с целыми коэффициентами. Возведя это равенство в квадрат, убедимся, что  (x + 1)2n  имеет тот же вид, то есть 2n-я строка тоже хорошая. Отсюда следует, что хороши все строки с номерами вида 2k.
  Пусть  n = 2k,  то есть n-я строка хорошая. Тогда из построения треугольника Паскаля следует, что в предыдущей строке (с номером  2k – 1)  все числа одной чётности, то есть все они нечётны. Кроме того, в n-й строке стоит группа из  n – 1  чётных чисел подряд. Поэтому в (n+1)-й строке под ней образуется группа из  n – 2  чётных чисел, в (n+2)-й – группа из  n – 3  чётных чисел, …, в (2n–2)-й – одно чётное число (в середине). Таким образом, во всех строках с номерами от  2k + 1  до  2k – 2  чётные числа есть.


Ответ

При  n = 2k – 1.

Замечания

См. также задачу 32881.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 2
Название Комбинаторика
Тема Комбинаторика
параграф
Номер 3
Название Размещения, перестановки и сочетания
Тема Классическая комбинаторика
задача
Номер 02.077

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .