Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Через вершины А и С треугольника АВС проведены прямые, перпендикулярные биссектрисе угла АВС. Они пересекают прямые СВ и ВА в точках К и М соответственно. Найдите длину АВ, если  ВМ = 8 см,  KC = 1 см  и  АВ > ВС.

Вниз   Решение


В окружность радиуса 10 вписан четырёхугольник, диагонали которого перпендикулярны и равны 12 и  10.  Найдите стороны четырёхугольника.

ВверхВниз   Решение


Найдите все значения корней:
  a)  ;   б)  ;   в)  ;   г)  ;   д)  ;   е)  .

ВверхВниз   Решение


Существует следующий способ проверить, делится ли данное число N на 19:
  1) отбрасываем последнюю цифру у числа N;
  2) прибавляем к полученному числу произведение отброшенной цифры на 2;
  3) с полученным числом проделываем операции 1) и 2) до тех пор, пока не останется число, меньшее или равное 19.
  4) если остается 19, то 19 делится на N, в противном случае N не делится на 19.
Докажите справедливость этого признака делимости.

ВверхВниз   Решение


``65 = 64 = 63''. Тождество Кассини лежит в основе одного геометрического парадокса. Он заключается в том, что можно взять шахматную доску, разрезать ее на четыре части, как показано ниже, а затем составить из этих же частей прямоугольник:




\begin{picture}
(80,80)\multiput(0,0)(0,10){9}{\line(1,0){80}}
\multiput(0,0)(...
...(0,1){80}}
\put(0,50){\line(1,0){80}}\qbezier(50,0)(40,25)(30,50)
\end{picture}
        
\begin{picture}
(150,50)\multiput(0,0)(0,10){6}{\line(1,0){130}}
\multiput(0,0...
...0,1){30}}\put(50,20){\line(0,1){30}}
\qbezier(0,0)(65,25)(129,50)
\end{picture}



Как расположить те же четыре части шахматной доски, чтобы доказать равенство ``64=63''?

ВверхВниз   Решение


Пусть z1, ..., zn – отличные от нуля комплексные числа, лежащие в полуплоскости  α < arg z < α + π.  Докажите, что
  а)  z1 + ... + zn ≠ 0;
  б)  1/z1 + ... + 1/zn ≠ 0.

ВверхВниз   Решение


Постройте прямоугольный треугольник по гипотенузе и проекции одного из катетов на гипотенузу.

ВверхВниз   Решение


Найдите все числа вида 13xy45z,  которые делятяс на 792.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность радиуса R. Его диагонали взаимно перпендикулярны и пересекаются в точке P.
Найдите  AP² + BP² + CP² + DP²  и  AB² + BC² + CD² + AD².

ВверхВниз   Решение


Докажите, что при любом натуральном n число  n² + 8n + 15  не делится на  n + 4.

ВверхВниз   Решение


Известно, что  z + z–1 = 2 cos α.
  а) Докажите, что  zn + z–n = 2 cos nα.
  б) Как выражается  zn + z–n  через  y = z + z–1?

ВверхВниз   Решение


Правильный треугольник ABC вписан в окружность. Прямая l, проходящая через середину стороны AB и параллельная AC, пересекает дугу AB, не содержащую C, в точке K. Докажите, что отношение  AK : BK  равно отношению стороны правильного пятиугольника к его диагонали.

ВверхВниз   Решение


С помощью циркуля и линейки постройте окружность, касающуюся двух данных концентрических окружностей и данной прямой.

ВверхВниз   Решение


Найдите наименьшее число вида  n = 2αpq,  где p и q – некоторые нечётные простые числа, для которого  σ(n) = 3n.

Вверх   Решение

Задача 60550
Тема:    [ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 8,9,10
Название задачи: Задача Ферма.
Из корзины
Прислать комментарий

Условие

Найдите наименьшее число вида  n = 2αpq,  где p и q – некоторые нечётные простые числа, для которого  σ(n) = 3n.


Решение

  Заметим, что  σ(120) = 360 = 3·120.
  Пусть  p < q  и  n = 2αpq < 120.  Тогда  p ≥ 3,  q ≥ 5,  pq ≥ 15,  значит,  α < 3.
  3·2αpq = σ(n) = (2α+1 – 1)(p + 1)(q + 1),  следовательно,  2α+1 – 1  делится на q.
  2² – 1  делится только на 3, а  2³ – 1  – только на 7. Поэтому  α = 2,  q = 7,  p = 3 или 5.  Но  4·5·7 > 120,  а  σ(4·3·7) = 7·4·8  не делится на 3.


Ответ

n = 120.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 3
Название Мультипликативные функции
Тема Неопределено
задача
Номер 03.098

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .