Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Можно ли нарисовать правильный треугольник с вершинами в узлах квадратной сетки?

Вниз   Решение


Коля Васин задумал число от 1 до 200. За какое наименьшее число вопросов вы сможете его отгадать, если он отвечает на каждый вопрос
а) ``да'' или ``нет'';
б) ``да'', ``нет'' или ``не знаю''?

ВверхВниз   Решение


Докажите, что связный граф с 2n нечётными вершинами можно нарисовать, оторвав карандаш от бумаги ровно  n –1  раз и не проводя никакое ребро дважды.

ВверхВниз   Решение


Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Докажите, что этот многоугольник правильный.

ВверхВниз   Решение


Для последовательности {an}

$\displaystyle \lim\limits_{n\to\infty}^{}$$\displaystyle \left(\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right.$an + 1 - $\displaystyle {\dfrac{a_n}{2}}$$\displaystyle \left.\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right)$ = 0.

Докажите, что $ \lim\limits_{n\to\infty}^{}$an = 0.

ВверхВниз   Решение


Аня, Ваня и Саня сели в автобус, не имея медных монет, однако сумели заплатить за проезд, потратив по пять копеек каждый. Как им это удалось?

ВверхВниз   Решение


При каких натуральных a и b число logab будет рациональным?

ВверхВниз   Решение


Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное.

Вверх   Решение

Задача 60866
Темы:    [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Рациональные и иррациональные числа ]
[ Тригонометрия (прочее) ]
Сложность: 3+
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное.


Решение

Тангенс угла между стороной треугольника и любой из координатных осей рационален. Углы треугольника являются суммами или разностями таких углов и, следовательно, также имеют рациональные тангенсы.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 5
Название Числа, дроби, системы счисления
Тема Системы счисления
параграф
Номер 1
Название Рациональные и иррациональные числа
Тема Дроби
задача
Номер 05.028

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .