ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся. Уравнение x² + px + q = 0 имеет корни x1 и x2. Напишите уравнение, корнями которого будут числа y1, y2 равные: а) |
Задача 60926
УсловиеУравнение x² + px + q = 0 имеет корни x1 и x2. Напишите уравнение, корнями которого будут числа y1, y2 равные: а) РешениеВсе вычисления основаны на формулах из задачи 60924. а) б) в) г) Ответа) x² + (p³ – 3pq)x + q³ = 0; б) q²x² + (2q – p²)x + 1 = 0; в) qx² + p(q + 1)x + (q + 1)² = 0; г) qx² + (2q – p²)x + q = 0. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке