ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли раскрасить грани куба в три цвета так, чтобы каждый цвет присутствовал, но нельзя было увидеть одновременно грани всех трёх цветов, откуда бы мы ни взглянули на куб? (Одновременно можно увидеть только три любые грани, имеющие общую вершину.) |
Задача 61014
УсловиеВыведите из теоремы 61013 то, что РешениеУказанное число – корень многочлена x2 – 17. Согласно задаче 61013 все рациональные корни этого многочлена являются целыми числами. Но целых корней это уравнение, очевидно, не имеет. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке