ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61051
Темы:    [ Многочлен n-й степени имеет не более n корней ]
[ Интерполяционный многочлен Лагранжа ]
Сложность: 3
Классы: 9,10
В корзину
Прислать комментарий

Условие

Опишите явный вид многочлена  f(x) = f1(x) + f2(x) + ... + fn(x),  где  fi(x) – многочлены из задачи 61050.


Подсказка

Многочлен  f(x) – 1  степени  n – 1  имеет n корней.


Ответ

f(x) = 1.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 6
Название Многочлены
Тема Многочлены
параграф
Номер 6
Название Интерполяционный многочлен Лагранжа
Тема Многочлены (прочее)
задача
Номер 06.128

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .