Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Даны три прямые a, b, c. Докажите, что композиция симметрий ScoSboSa является симметрией относительно некоторой прямой тогда и только тогда, когда данные прямые пересекаются в одной точке.

Вниз   Решение


Докажите, что сумма

cos 32x + a31cos 31x + a30cos 30x + ... + a1cos x

принимает как положительные, так и отрицательные значения.

ВверхВниз   Решение


а) Четыре вершины правильного двенадцатиугольника расположены в серединах сторон квадрата (рис.). Докажите, что площадь заштрихованной части в 12 раз меньше площади двенадцатиугольника.
б) Докажите, что площадь двенадцатиугольника, вписанного в окружность радиуса 1, равна 3.


Вверх   Решение

Задача 61510
Темы:    [ Раскладки и разбиения ]
[ Геометрические интерпретации в алгебре ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

На доске написано n натуральных чисел. Пусть ak – количество тех из них, которые больше k. Исходные числа стерли и вместо них написали все положительные ak. Докажите, что если с новыми числами сделать то же самое, то на доске окажется исходный набор чисел.
Например, для чисел 5, 3, 3, 2, получается следующая цепочка   (5, 3, 3, 2)  →  (4, 4, 3, 1, 1)  →  (5, 3, 3, 2).


Подсказка

Проследите за изменением диаграммы Юнга.


Решение

См. задачу 98424.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 11
Название Последовательности и ряды
Тема Последовательности
параграф
Номер 3
Название Производящие функции
Тема Производящие функции
задача
Номер 11.083

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .