Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

В каждой клетке полоски длины 100 стоит по фишке. Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно 4 фишки. За какое наименьшее количество рублей можно переставить фишки в обратном порядке?

Вниз   Решение


 Гриша едет по маршруту длиной 100 км. В его автомобиле имеется компьютер, дающий прогноз времени, оставшегося до прибытия в конечный пункт. Это время рассчитывается исходя из предположения, что средняя скорость автомобиля на оставшемся участке пути будет такой же, как и на уже пройденном.
  Сразу же после старта компьютер показал "2 часа" и всё дальнейшее время показывал именно это число (компьютер исправен). Найдите x(t) – зависимость пути, который проехал Гриша, от времени с момента старта. Постройте график этой зависимости.

ВверхВниз   Решение


На каждой из клеток доски размером 9×9 находится фишка. Петя хочет передвинуть каждую фишку на соседнюю по стороне клетку так, чтобы снова в каждой из клеток оказалось по одной фишке. Сможет ли Петя это сделать?

ВверхВниз   Решение


В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.

ВверхВниз   Решение


В треугольнике ABC медиана BM равна стороне AC. На продолжениях сторон BA и AC за точки A и C выбраны соответственно точки D и E, причём
AD = AB  и  CE = CM.  Докажите, что прямые DM и BE перпендикулярны.

ВверхВниз   Решение


В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.

ВверхВниз   Решение


На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток.

ВверхВниз   Решение


В треугольнике ABC высота AH проходит через середину медианы BM.
Докажите, что в треугольнике BMC также одна из высот проходит через середину одной из медиан.

Вверх   Решение

Задача 65224
Темы:    [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

В треугольнике ABC высота AH проходит через середину медианы BM.
Докажите, что в треугольнике BMC также одна из высот проходит через середину одной из медиан.


Решение

Пусть L – точка пересечения AH и BM, тогда CL – медиана треугольника BMC. Прямая, проходящая через M параллельно AH, содержит как высоту треугольника BMC, так и среднюю линию треугольника ACH, то есть проходит через середину медианы CL.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада по геометрии
год/номер
Номер 13 (2015 год)
Дата 2015-04-13
класс
Класс 8-9
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .