Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?

Вниз   Решение


Можно ли расставить в клетках таблицы $6\times 6$ числа, среди которых нет одинаковых, так, чтобы в каждом прямоугольнике $1\times 5$ (как вертикальном, так и горизонтальном) сумма чисел была равна 2022 или 2023?

ВверхВниз   Решение


Автор: Лифшиц Ю.

Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)

ВверхВниз   Решение


Внутри параллелограмма ABCD выбрана точка K так, что середина стороны AD равноудалена от точек K и C, а середина стороны CD равноудалена от точек K и A. Точка N – середина отрезка BK. Докажите, что углы NAK и NCK равны.

ВверхВниз   Решение


Про грибы.В корзине лежат 30 грибов. Среди любых 12 из них имеется хотя бы один рыжик, а среди любых 20 грибов — хотя бы один груздь. Сколько рыжиков и сколько груздей в корзине?

ВверхВниз   Решение


Автор: Фольклор

У двух трапеций соответственно равны углы и диагонали. Верно ли, что такие трапеции равны?

Вверх   Решение

Задача 65230
Темы:    [ Равнобедренные, вписанные и описанные трапеции ]
[ Правильный (равносторонний) треугольник ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Автор: Фольклор

У двух трапеций соответственно равны углы и диагонали. Верно ли, что такие трапеции равны?


Решение 1

Рассмотрим две равнобокие трапеции с соответственно параллельными сторонами, вписанные в одну окружность (рис. слева). Тогда углы трапеций равны. По теореме синусов и диагонали этих трапеций равны.

             


Решение 2

Рассмотрим равносторонний треугольник ABC. Пусть A1 и A2 – такие точки на стороне BC, а B1 и B2 – такие точки на стороне AC, что
BA1 = A2C = CB2 = AB1  (рис. справа). Тогда трапеции AB2A2B и AB1A1B – искомые.


Ответ

Неверно.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада по геометрии
год/номер
Номер 13 (2015 год)
Дата 2015-04-13
класс
Класс 10-11 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .