ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существует ли такое натуральное n, что для любых ненулевых цифр a и b число anb делится на ab ? (Через x...y обозначено число, получаемое приписыванием друг к другу десятичных записей чисел x, ..., y.)
Максимальное время работы на одном тесте: 1 секунда Максимальный объем используемой памяти: 64 мегабайта Как показывает опыт, для создания успешной футбольной команды важны не только умения отдельных ее участников, но и сплоченность команды в целом. Характеристикой умения игрока является показатель его профессионализма (ПП). Команда является сплоченной, если ПП каждого из игроков не превосходит суммы ПП любых двух других (в частности, любая команда из одного или двух игроков является сплоченной). Перед тренерским составом молодежной сборной Москвы была поставлена задача сформировать сплоченную сборную с максимальной суммой ПП игроков (ограничений на количество игроков в команде нет). Ваша задача состоит в том, чтобы помочь сделать правильный выбор из N человек, для каждого из которых известен его ПП. Формат входных данных В первой строке входного файла e.in записано целое число N (0 £ N £ 30000). В последующих N строках записано по одному целому числу Pi (0 £ Pi £ 60000), представляющему собой ПП соответствующего игрока. Формат выходных данных В первой строке выходного файла e.out через пробел выведите число игроков, отобранных в команду, и их суммарный ПП. В последующих строках выведите номера игроков, вошедших в команду, в произвольном порядке - по одному числу в строке. Нумерация игроков должна соответствовать порядку перечисления игроков во входном файле. Если ответов несколько, выведите любой из них. Примеры
В прямоугольнике проведена ломаная, соседние звенья которой перпендикулярны и равны меньшей стороне прямоугольника (см. рис). В треугольнике $ABC$ вписанная окружность $\omega$ касается сторон $BC$, $CA$, $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно, $P$ – произвольная точка этой окружности. Прямая $AP$ вторично пересекает описанную окружность треугольника $AB_1C_1$ в точке $A_2$. Аналогично строятся точки $B_2$ и $C_2$. Докажите, что описанная около треугольника $A_2B_2C_2$ окружность касается $\omega$. Внутри выпуклого четырёхугольника ABCD, в котором AB = CD, выбрана точка P таким образом, что сумма углов PBA и PCD равна 180°. Докажите следующие формулы: an+1 – bn+1 = (a – b)(an + an–1b + ... + bn); a2n+1 + b2n+1 = (a + b)(a2n – a2n–1b + a2n–2b2 – ... + b2n). В остроугольном неравнобедренном треугольнике ABC высоты AA' и BB' пересекаются в точке H, а медианы треугольника AHB пересекаются в точке M. Прямая CM делит отрезок A'B' пополам. Найдите угол C. |
Задача 65374
УсловиеВ остроугольном неравнобедренном треугольнике ABC высоты AA' и BB' пересекаются в точке H, а медианы треугольника AHB пересекаются в точке M. Прямая CM делит отрезок A'B' пополам. Найдите угол C. РешениеПусть C0 – середина AB, а H' – точка, симметричная H относительно C0 (как известно, H' – точка описанной окружности треугольника ABC, диаметрально противоположная C). Медианы CC0 и CM подобных треугольников ABC и A'B'C симметричны относительно биссектрисы угла C. Также симметричны относительно этой биссектрисы высота CH и диаметр описанной окружности CH'. Следовательно, ∠H'CC0 = ∠MCH, а значит, CM – симедиана треугольника CHH' (см. рис.). Отсюда (CH'/CH)² = H'M/MH = 2 (см. задачу 56978), а поскольку CH = CH' cos∠C, то ∠C = 45°. Ответ45°. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке