Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что для любого натурального числа n  

Вниз   Решение


Продолжения сторон KN и LM выпуклого четырёхугольника KLMN пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN. Найдите сторону KL, если  KQ = 12,  NQ = 8,  а площадь четырёхугольника KLMN равна площади треугольника LQM.

ВверхВниз   Решение


Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов.
Докажите, что для этой цели ему
  а) достаточно четырёх взвешиваний и
  б) недостаточно трёх.

ВверхВниз   Решение


Автор: Хилько Д.

На стороне BC треугольника ABC взята произвольная точка D. Через D и A проведены окружности ω1 и ω2 так, что прямая BA касается ω1, прямая CA касается ω2. BX – вторая касательная, проведённая из точки B к окружности ω1, CY – вторая касательная, проведённая из точки C к окружности ω2. Докажите, что описанная окружность треугольника XDY касается прямой BC.

ВверхВниз   Решение


Каждая сторона выпуклого четырёхугольника разделена на 8 равных частей. Соответствующие точки деления на противоположных сторонах соединены друг с другом, и полученные клетки раскрашены в шахматном порядке. Докажите, что сумма площадей черных клеток равна сумме площадей белых клеток.

ВверхВниз   Решение


На сторонах угла ABC отмечены точки М и K так, что углы BMC и BKA равны,  BM = BK,  AB = 15,  BK = 8,  CM = 9.
Найдите периметр треугольника СOK, где O – точка пересечения прямых AK и СМ.

ВверхВниз   Решение


Точки M и N лежат на сторонах соответственно AB и AC треугольника ABC, причём AM = CN и AN = BM. Докажите, что площадь четырёхугольника BMNC по крайней мере в три раза больше площади треугольника AMN.

ВверхВниз   Решение


Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.

Вверх   Решение

Задача 65382
Темы:    [ Четырехугольная пирамида ]
[ Сфера, описанная около пирамиды ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.


Решение

  Так как AA1 и CC1 – высоты треугольника SAC, точки A, C, A1 и C1 лежат на одной окружности, то есть  SC·SA1 = SA·SC1.  Значит, существует инверсия с центром S, переводящая A1 в C, а C1 в A. Так как  SB·SD1 = SD·SB1,  точки B1 и D1 при этой инверсии перейдут в точки B2 и D2, лежащие на лучах SD и SB соответственно, причём  B2D2 || BD.
  С другой стороны, точки A, C, B2, D2 должны лежать в одной плоскости (как образы точек A1, B1, C1, D1, лежащих на сфере, содержащей S). Но, если прямая B2D2 не лежит в плоскости ABCD, то она скрещивается с AC. Значит, описанная ситуация возможна лишь при  B2 = B  и  D2 = D.  Следовательно, точки A1, B1, C1, D1 лежат в плоскости, являющейся образом сферы SABCD.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2015
задача
Класс 10
задача
Номер 10.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .