Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC  (AB = AC)  угол A равен α. На стороне AB взята точка D так, что  AD = AB/n.  Найдите сумму  n – 1  углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей:
  а) при  n = 3;
  б) при произвольном n.

Вниз   Решение


Автор: Фольклор

Известно, что  5(а – 1) = b + a².  Сравните числа а и b.

ВверхВниз   Решение


Даны натуральное число  n > 3  и положительные числа x1, x2, ..., xn, произведение которых равно 1.
Докажите неравенство  

ВверхВниз   Решение


Найдите наименьшее значение функции y = (x-21)ex-20 на отрезке [19;21] .

ВверхВниз   Решение


Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017.

ВверхВниз   Решение


Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов.

ВверхВниз   Решение


Найдите наибольшее значение функции y = 16x-4 sin x+8 на отрезке [-;0] .

ВверхВниз   Решение


Найдите все такие простые числа p и q , что  p + q = (p – q)³.

ВверхВниз   Решение


Натуральные числа от 1 до 200 разбили на 50 множеств.
Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.

ВверхВниз   Решение


Пусть AD – биссектриса треугольника ABC и прямая l касается окружностей, описанных около треугольников ADB и ADC , в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD , DC и MN касается прямой l .

ВверхВниз   Решение


Назовём раскраску доски 8×8 в три цвета хорошей, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.)  Докажите, что количество хороших раскрасок не меньше чем 68.

ВверхВниз   Решение


Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?

Вверх   Решение

Задача 65391
Темы:    [ Арифметическая прогрессия ]
[ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?


Решение

Например, такими являются числа 1,  1 + 99!,  1 + 2·99!,  ...,  1 + 99·99!.  Действительно, пусть два числа имеют общий простой делитель p. Тогда p делит их разность, то есть число вида n·99!, где  n < 100.  Поэтому и  p < 100.  Но при делении на такое число все числа дают в остатке 1. Противоречие.


Ответ

Возможно.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 25
Дата 2003/2004
вариант
Вариант осенний тур, основной вариант, 8-9 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .