ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках? Какое наибольшее количество множителей вида На плоскости расположено несколько непересекающихся отрезков.
Всегда ли можно соединить концы некоторых из них отрезками так,
чтобы получилась замкнутая несамопересекающаяся ломаная?
На бесконечном листе клетчатой бумаги (размер
клетки 1×1) укладываются кости домино размером 1×2
так, что они накрывают все клетки. Можно ли при этом
добиться того, чтобы любая прямая, идущая по линиям
сетки, разрезала лишь конечное число костей?
|
Задача 65716
УсловиеВ остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают). РешениеПрямая CB и проведённая окружность симметричны относительно высоты AH. Значит, и их общие точки C и N симметричны. Поэтому в треугольнике ACN два угла по 60°, то есть он равносторонний. Аналогично треугольник BCM равносторонний. Следовательно, AN || BM (ввиду равенства углов CAN и CMB). Замечания4 балла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке