ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Верно ли, что многочлен P(n) = n² + n + 41 при всех n принимает только простые значения? Двое по очереди ставят коней в клетки шахматной доски так, чтобы кони не били друг друга. Проигрывает тот, кто не может сделать ход.
Пусть a и n – натуральные числа, большие 1. Докажите, что если число an – 1 простое, то a = 2 и n – простое. Дан прямоугольный параллелепипед размерами а) 4 × 4 × 4; б) 4 × 4 × 3; в) 4 × 3 × 3, составленный из единичных кубиков. За ход разрешается проткнуть спицей любой ряд, если в нем есть хотя бы один непроткнутый кубик. Проигрывает тот, кто не может сделать ход. Имеется две кучки спичек: а) 101 спичка и 201 спичка; б) 100 спичек и 201 спичка. За ход разрешается уменьшить количество спичек в одной из кучек на число, являющееся делителем количества спичек в другой кучке. Выигрывает тот, после чьего хода спичек не остается.
а) Двое по очереди ставят слонов в клетки шахматной доски. Очередным ходом надо побить хотя бы одну небитую клетку. Слон бьет и клетку, на которой стоит. Проигрывает тот, кто не может сделать ход. б) Та же игра, но с ладьями.
Докажите неравенство 2m+n–2 ≥ mn, где m и n – натуральные числа. На плоскости даны неравнобедренный треугольник, его описанная окружность, и отмечен центр его вписанной окружности. |
Задача 66143
УсловиеНа плоскости даны неравнобедренный треугольник, его описанная окружность, и отмечен центр его вписанной окружности. Решение Пусть биссектрисы AA1, BB1 и CC1 треугольника ABC пересекаются в точке I, BL – биссектриса внешнего угла B (L лежит на прямой AC, см. рис.). 1) Строим прямые AI, BI и CI (биссектрисы углов треугольника) и находим точки A1, C1 и середину W дуги AC как пересечение BI с описанной окружностью. 2) Строим прямые A1C1 и AC и находим точку L их пересечения. 3) Строим прямую BL и находим точку K её пересечения с окружностью. 4) Проводим KW. Так как угол KBW – прямой, то KW – диаметр, что и требовалось. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке