Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Какое наибольшее число фишек можно убрать с доски такими операциями?

Вниз   Решение


На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

ВверхВниз   Решение


Разложить на целые рациональные множители выражение  a10 + a5 + 1.

ВверхВниз   Решение


На сторонах треугольника ABC внешним образом построены правильные треугольники A1BC, AB1C и ABC1. Докажите, что AA1 = BB1 = CC1.

ВверхВниз   Решение


На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCP и CDQ. Докажите, что треугольник APQ правильный.

ВверхВниз   Решение


На бирже Цветочного города 1 лимон и 1 банан можно обменять на 2 апельсина и 23 вишни, а 3 лимона – на 2 банана, 2 апельсина и 14 вишен. Что дороже: лимон или банан?

ВверхВниз   Решение


Точки А, В и С лежат на прямой m, а точки D и Е на ней не лежат. Известно, что AD = AE и BD = BE. Докажите, что CD = CE.

Вверх   Решение

Задача 66499
Тема:    [ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3
Классы: 7,8
Из корзины
Прислать комментарий

Условие

Точки А, В и С лежат на прямой m, а точки D и Е на ней не лежат. Известно, что AD = AE и BD = BE. Докажите, что CD = CE.

Решение

Так как AD = AE, то точка A лежит на серединном перпендикуляре к отрезку DE (см. рис.). Аналогично точка B лежит на серединном перпендикуляре к DE. Учитывая, что двумя точками прямая определяется однозначно, получим: прямая AB – серединный перпендикуляр к отрезку DE. Так как точка C лежит на серединном перпендикуляре к DE, то C равноудалена от D и E, то есть CD = CE, что и требовалось.

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2018/2019
класс
Класс 7
задача
Номер 7.2.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .