Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Назаров Ф.

Положительные числа a, b, c, d таковы, что  a ≤ b ≤ c ≤ d  и  a + b + c + d ≥ 1.  Докажите, что  a² + 3b² + 5c² + 7d² ≥ 1.

Вниз   Решение


Автор: Назаров Ф.

В ряд стоят 15 слонов, каждый из которых весит целое число килограммов. Если взять любого слона, кроме стоящего справа, и прибавить к его весу удвоенный вес его правого соседа, то получится 15 тонн (для каждого из 14 слонов). Найдите вес каждого из 15 слонов.

ВверхВниз   Решение


Таблица размером 2017×2017 заполнена ненулевыми цифрами. Среди 4034 чисел, десятичные записи которых совпадают со строками и столбцами этой таблицы, читаемыми слева направо и сверху вниз соответственно, все, кроме одного, делятся на простое число p, а оставшееся число на p не делится. Найдите все возможные значения p.

ВверхВниз   Решение


Автор: Фомин Д.

Каждый член последовательности, начиная со второго, получается прибавлением к предыдущему числу его суммы цифр. Первым членом последовательности является единица. Встретится ли в последовательности число 123456?

ВверхВниз   Решение


Автор: Назаров Ф.

Положительные числа a, b, c таковы, что  a ≥ b ≥ c  и  a + b + c ≤ 1.  Докажите, что  a² + 3b² + 5c² ≤ 1.

ВверхВниз   Решение


Петя и Миша играют в такую игру. Петя берёт в каждую руку по монетке: в одну – 10 коп., а в другую – 15. После этого содержимое левой руки он умножает на 4, 10, 12 или 26, а содержимое правой руки – на 7, 13, 21 или 35. Затем Петя складывает два получившихся произведения и называет Мише результат. Может ли Миша, зная этот результат, определить, в какой руке у Пети – правой или левой – монета достоинством в 10 коп.?

ВверхВниз   Решение


Автор: Захаров Д.

Изначально на белой клетчатой плоскости конечное число клеток окрашено в чёрный цвет. На плоскости лежит бумажный клетчатый многоугольник $M$, в котором больше одной клетки. Его можно сдвигать, не поворачивая, в любом направлении на любое расстояние, но так, чтобы после сдвига он лежал "по клеткам". Если после очередного сдвига ровно одна клетка у $M$ лежит на белой клетке плоскости, эту белую клетку окрашивают в чёрный цвет и делают следующий сдвиг. Докажите, что существует такая белая клетка, которая никогда не будет окрашена в чёрный цвет, сколько бы раз мы ни сдвигали $M$ по описанным правилам.

Вверх   Решение

Задача 66731
Темы:    [ Процессы и операции ]
[ Геометрия на клетчатой бумаге ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 4
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Автор: Захаров Д.

Изначально на белой клетчатой плоскости конечное число клеток окрашено в чёрный цвет. На плоскости лежит бумажный клетчатый многоугольник $M$, в котором больше одной клетки. Его можно сдвигать, не поворачивая, в любом направлении на любое расстояние, но так, чтобы после сдвига он лежал "по клеткам". Если после очередного сдвига ровно одна клетка у $M$ лежит на белой клетке плоскости, эту белую клетку окрашивают в чёрный цвет и делают следующий сдвиг. Докажите, что существует такая белая клетка, которая никогда не будет окрашена в чёрный цвет, сколько бы раз мы ни сдвигали $M$ по описанным правилам.


Решение

  Центры клеток $M$ будем называть узлами. Рассмотрим выпуклую оболочку $V$ узлов. Можно считать, что одна из сторон $V$ горизонтальна и $V$ лежит над ней.
  Проведём горизонтальную прямую $l$ ниже $V$ и докажем, что ни одна клетка ниже $l$ не будет окрашена. Действительно, в момент, когда первая такая клетка $K$ будет окрашена, в неё попадёт узел из $M$. Но другой узел из $M$ окажется на той же высоте или ниже. Следовательно, клетка $K$ в этот момент окрашена не будет.

Замечания

1. Связность фигуры-шаблона не важна. Если фигура не помещается ни в горизонталь, ни в вертикаль, то окрашено будет конечное число клеток.

2. 8 баллов.

Источники и прецеденты использования

олимпиада
Название Турнир городов
номер/год
Дата 2018/19
Номер 40
вариант
Вариант осенний тур, сложный вариант, 10-11 класс
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .