Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Клетки бумажного квадрата $8 \times 8$ раскрашены в два цвета. Докажите, что Арсений может вырезать из него по линиям сетки два квадрата $2 \times 2$, не имеющих общих клеток, раскраски которых совпадают. (Раскраски, отличающиеся поворотом, считаются разными.)

Вниз   Решение


Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD.

ВверхВниз   Решение


В треугольнике $ABC$ ($a>b>c$) указаны инцентр $I$, а также точки $K$ и $N$ касания вписанной окружности со сторонами $BC$ и $AC$ соответственно. Проведя не более трёх линий одной линейкой, постройте отрезок длины $a-c$.

ВверхВниз   Решение


Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?

ВверхВниз   Решение


Биссектриса угла $A$ треугольника $ABC$ при продолжении пересекает описанную около него окружность $\omega$ в точке $W$. Окружность $s$, построенная на отрезке $AH$ как на диаметре ($H$ – ортоцентр в треугольнике $ABC$), пересекает $\omega$ в точке $P$. Восстановите треугольник $ABC$, если остались точки $A$, $P$, $W$.

ВверхВниз   Решение


В треугольнике ABC  AB = BC. Из точки E на стороне AB опущен перпендикуляр ED на BC. Оказалось, что  AE = ED.  Найдите угол DAC.

ВверхВниз   Решение


Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны.

ВверхВниз   Решение


Постройте треугольник $ABC$ по вершине $A$, центру описанной окружности $O$ и прямой Эйлера, если известно, что прямая Эйлера отсекает на сторонах $AB$ и $AC$ равные отрезки от вершины $A$.

Вверх   Решение

Задача 66921
Темы:    [ Построение треугольников по различным элементам ]
[ Вписанные и описанные окружности ]
[ Изогональное сопряжение ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 4
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Постройте треугольник $ABC$ по вершине $A$, центру описанной окружности $O$ и прямой Эйлера, если известно, что прямая Эйлера отсекает на сторонах $AB$ и $AC$ равные отрезки от вершины $A$.

Решение

Из условия следует. что прямая Эйлера параллельна внешней биссектрисе угла $A$. Так как $AO$ и $AH$ – изогонали, то $AO=AH$. Значит, мы можем найти $H$ как вторую точку пересечения окружности с центром $A$ и радиусом $AO$ с прямой Эйлера. Пусть теперь $AH$ вторично пересекает описанную окружность в точке $D$. Тогда $B$ и $C$ – точки пересечения серединного перпендикуляра к отрезку $HD$ с описанной окружностью.

Замечания

Так как в любом треугольнике $AH$ равно удвоенному расстоянию от $O$ до $BC$, а в нашем треугольнике $AH$ равно радиусу описанной окружности, угол $A$ равен $60$ или $120$ градусам. Легко видеть, что при $\angle A=60^{\circ}$ прямая Эйлера параллельна внешней биссектрисе угла $A$, а при $\angle A=120^{\circ}$ – внутренней. Таким образом, в данном треугольнике $\angle A=60^{\circ}$.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2020
Заочный тур
задача
Номер 9 [8-9 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .