Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Саша и Маша загадали по натуральному числу и сообщили их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нём оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша?

Вниз   Решение


Автор: Колосов В.

Пусть x, y, z – любые числа из интервала  (0, π/2).  Докажите неравенство  

ВверхВниз   Решение


Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12.
Найдите объёмы белых параллелепипедов.

ВверхВниз   Решение


Петя взял произвольное натуральное число, умножил его на 5, результат снова умножил на 5, потом ещё на 5, и так далее.
Верно ли, что с какого-то момента все получающиеся у Пети числа будут содержать 5 в своей десятичной записи?

Вверх   Решение

Задача 67063
Темы:    [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Признаки делимости на 5 и 10 ]
Сложность: 3
Классы: 7,8,9,10
Из корзины
Прислать комментарий

Условие

Петя взял произвольное натуральное число, умножил его на 5, результат снова умножил на 5, потом ещё на 5, и так далее.
Верно ли, что с какого-то момента все получающиеся у Пети числа будут содержать 5 в своей десятичной записи?


Решение

Запишем исходное число в виде $2^km$, где $m$ нечётно. После  $k + 1$  умножения на 5 получится число, оканчивающееся на $k$ нулей, перед которыми стоит пятёрка, и она сохранится при дальнейших умножениях.


Ответ

Верно.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
год/номер
Номер 43
Дата 2021/22
вариант
Вариант весенний тур, базовый вариант, 8-9 класс
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .