Условие
На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
Решение
Возьмем на плоскости произвольную прямую
l и спроецируем на нее все многоугольники. При этом мы получим несколько отрезков, любые два из которых имеют общую точку. Рассмотрим левые концы этих отрезков и выберем из них самый правый (чтобы стало ясно, что значит «правый» и «левый», на прямой нужно задать направление). Полученная точка принадлежит всем отрезкам, поэтому проведенный через нее перпендикуляр к прямой
l пересекает все данные многоугольники.
Источники и прецеденты использования