ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что если ∠A = 45°, то B1C1 – диаметр окружности девяти точек треугольника ABC. На сторонах квадрата, как на основаниях, построены во внешнюю сторону равные равнобедренные треугольники с острым углом при вершине. Доказать, что получившуюся фигуру нельзя разбить на параллелограммы. Дано n целых чисел a1 = 1, a2, a3, ..., an, причём ai ≤ ai+1 ≤ 2ai (i = 1, 2,..., n – 1) и сумма всех чисел чётна. Можно ли эти числа разбить на две группы так, чтобы суммы чисел в этих группах были равны? Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке. Числа 1, 2, ..., k² расположены в квадратную таблицу На плоскости P стоит прямой круговой конус. Радиус основания r, высота — h. На расстоянии H от плоскости и l от высоты конуса находится источник света. Какую часть окружности радиуса R, лежащей в плоскости P и концентрической с окружностью, лежащей в основании конуса, осветит этот источник? В турнире собираются принять участие 25 шахматистов. Все они играют в разную
силу, и при встрече всегда побеждает сильнейший. |
Задача 78045
УсловиеВ турнире собираются принять участие 25 шахматистов. Все они играют в разную
силу, и при встрече всегда побеждает сильнейший. Решение Пример. Устроим турнир по олимпийской системе в пять туров: сначала сыграют 12 пар, потом 6, потом 3. Останется четыре человека, сыграют две пары, а потом победители между собой. Тем самым определится сильнейший. Он сыграл не более пяти партий. Ответ28 партий. ЗамечанияАналогично можно доказать, что для определения двух сильнейших из n участников надо провести n + m – 2 партии, где целое число m определяется неравенствами m – 1 < log2n ≤ m. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке